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Abstract

This paper studies a class of models for two-sided interactions, where outcomes depend
on latent characteristics of two distinct agent types. Models in this class have two core ele-
ments: the matching network, which records which agent pairs interact, and the interaction
function, which maps latent characteristics of these agents to outcomes and determines the
role of complementarities. I introduce the Tukey model, which captures complementarities
with a single interaction parameter, along with two extensions that allow richer comple-
mentarity patterns. First, I establish an identification trade-off between the flexibility of the
interaction function and the density of the matching network: the Tukey model is identified
under mild conditions, whereas the more flexible extensions require dense networks that are
rarely observed in applications. Second, I propose a cycle-based estimator for the Tukey in-
teraction parameter and show that it is consistent and asymptotically normal even when the
network is sparse. Third, I use its asymptotic distribution to construct a formal test of no
complementarities. Finally, an empirical illustration shows that the Tukey model recovers
economically meaningful complementarities.
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1 Introduction

In many economic settings, outcomes result from the interaction of two distinct types of agents
and depend on the latent characteristics each side brings to the match. For example, wages reflect
both worker skills and firm attributes (Abowd et al., 1999); corporate performance depends on
managerial ability together with company-specific features (Bertrand and Schoar, 2003); and the
productivity of public offices is shaped by local conditions and the capacity of the bureaucrats in
charge (Fenizia, 2022).

Analyzing such settings requires using observable outcomes to (i) disentangle the contribu-
tions of the agents involved in the interaction, quantifying their latent characteristics, and (ii)
understand how these characteristics interact to generate outcomes. Doing so provides the foun-
dation for addressing a wide range of questions. In the labor market, for instance: are high-
productivity workers more likely to match with high-productivity firms? How much of wage
variation is due to worker heterogeneity versus firm heterogeneity? Which observable charac-
teristics correlate with latent productivities? What is the role of complementarities in this set-
ting? If complementarities matter and wages proxy for output, can counterfactual reallocation of
matches raise aggregate productivity?

To study these questions, this paper introduces the Bipartite Interaction (BI) framework,
which flexibly models two-sided interactions. Any model in this framework has two compo-
nents: (i) a matching network, where nodes represent agents and edges capture which pairs are
observed, and (ii) an interaction function, which maps the latent characteristics of matched agents
into observed outcomes. The matching network summarizes the pattern of available data, while
restrictions on the interaction function reflect assumptions about complementarities and gener-
ate distinct models within the framework. A well-known example is the two-way fixed effects
(TWFE) model, which assumes an additively separable interaction function and therefore rules
out complementarities. This model has become widely used by applied economists, particularly
following its influential application by Abowd et al. (1999).

Building on this framework, I introduce the Tukey model, named after John Tukey, who pro-
posed an analogous functional form in the context of nonlinear ANOVA (Tukey, 1949). The Tukey
model enriches the TWFE specification by allowing for complementarities in a simple and inter-
pretable way: it relies on the assumption that the cross-partial derivative of the interaction func-
tion is determined by a single scalar parameter. This interaction parameter entirely captures the
presence, strength, and direction of complementarities; when it equals zero, complementarities
vanish, and the model coincides with TWFE.

Next, I study two extensions of the Tukey model that accommodate richer complementarity

structures by relaxing the restriction of a constant cross-partial derivative. The first allows a



firm-specific interaction parameter, permitting heterogeneity in complementarity across firms.
This specification uses the functional form in Bonhomme et al. (2019) but drops their grouping
assumption, treating each agent individually without clustering. The second extension imposes
no parametric restriction on the cross-partial derivative. It serves as a fully flexible nonparametric
benchmark, requiring only that the interaction function be monotone in both arguments.

Taken together, the BI framework, the Tukey model, and these extensions lead to three main
contributions. First, I show that identification in the BI framework reveals a trade-off between the
flexibility of the interaction function and the structure of the matching network: weaker assump-
tions on the interaction function require richer structure in the matching network. For example,
in the TWFE model, point identification requires only that the matching network be connected,
meaning any pair of nodes can be joined by a finite path of edges. This condition is no longer suf-
ficient in general. In the nonparametric specification, for instance, point identification requires
that any two nodes of the same type be linked by a path of length at most two. Importantly, the
trade-off is asymmetric: while the interaction function is unobserved and must be restricted by
assumption, the matching network is directly observed, and restrictions on it are straightforward
to check.

In empirical applications, researchers typically begin by choosing the restrictions to impose
on the interaction function. The results in this paper can then be used to verify whether the ob-
served matching network satisfies the corresponding conditions for parameter identification. For
the Tukey model, point identification requires the same connectedness condition as the TWFE
model, plus one additional requirement: the presence of at least one informative cycle of length
four in the matching network (a closed path involving four distinct edges and nodes). This con-
dition is often satisfied in practice, making the Tukey model a flexible and empirically applicable
alternative to the TWFE specification. By contrast, the requirements for point identification in
the two extensions are much more stringent and rarely met in empirical settings where two-sided
interactions are typically studied.

Second, I propose a new estimator in the Tukey model for the interaction parameter corre-
sponding to the cross-partial derivative of the interaction function, and study its properties in a
large-graph asymptotic analysis that does not require any agent to be observed many times. As
identification relies on the presence of a cycle in the matching network, the estimator uses mul-
tiple such cycles to average out noise and consistently estimate the parameter. Unlike alternative
methods in similar settings, the estimator does not require estimating latent characteristics. It is
consistent under the mild requirement that the number of cycles scales with graph size; in em-
ployer—employee matched data, I show that such cycles are typically abundant. The estimator is
asymptotically normal, with its variance shaped by three elements: (i) the variance of the out-

come error terms, (ii) heterogeneity in latent characteristics within cycles, and (iii) the ordering of



agents in each cycle. Since the ordering depends on labels chosen by the researcher, I propose an
instrument-based procedure that assigns them using observable characteristics correlated with
latent productivities, ensuring consistency and asymptotic normality.

Third, I develop a formal test for the absence of complementarities in the BI framework. The
test exploits the nesting of the TWFE model within the Tukey model: since the TWFE specifica-
tion corresponds to the Tukey model with the interaction parameter equal to zero, testing this
null provides a direct test for the absence of complementarities. The assumption of no comple-
mentarities implied by the TWFE model is often discussed in empirical work, and several informal
diagnostics are in use, but a formal test has not, to my knowledge, been studied. The cycle-based
estimator for the interaction parameter does not require estimating any individual latent char-
acteristics, which allows construction of a test whose asymptotic properties can be studied by
an asymptotic analysis aligned with common data patterns, including cases where nodes in the
matching network have no more than two links.

To illustrate how the Tukey model can provide richer insights into two-sided interactions, I
revisit the application in Limodio (2021) on the interaction between public managers and tasks,
focusing on the implementation of World Bank projects. The success of a project is modeled as the
outcome of the interaction between the ability of the manager in charge and the characteristics of
the country where they operate. Original estimates using the TWFE model found negative sort-
ing, with high-performing managers more likely to be matched with low-performing countries.
Estimates from the Tukey model add further insight: the interaction parameter is negative and
statistically different from zero, indicating negative complementarities, where high-performing
managers have larger value added when matched with low-performing countries. Given this
interaction function, negative sorting is optimal for maximizing average project success, which
may explain the allocation pattern documented in Limodio (2021) as a rational response to the

structure of complementarities.

1.1 Related Literature

The BI framework proposed in this paper is related to a wide range of earlier approaches to two-
sided interactions, many of which are reviewed in Bonhomme (2020). The benchmark in this class
is the TWFE, which assumes a modular (additively separable) interaction function. While most
empirical applications focus on worker-firm interactions (Abowd et al., 1999; Card et al., 2013;
Kline, 2024), TWFE-style methods have also been applied to other two-sided settings, includ-
ing managers and firms (Bertrand and Schoar, 2003), teachers and students (Jackson et al., 2014;
Chetty et al., 2014a,b), patients and healthcare providers (Finkelstein et al., 2016), and bureaucrats
and geographic postings (Fenizia, 2022; Limodio, 2021). Despite its versatility, the model relies



on the strong modularity assumption, which rules out complementarities: the marginal produc-
tivity of each agent is assumed constant and independent of the other side of the match. In many
contexts, this contrasts with the emphasis placed on matching, where significant resources are
devoted to finding “the right match”.

To relax modularity, Bonhomme et al. (2019) propose a model in which the interaction func-
tion allows for complementarities across the latent characteristics of agents. Their approach as-
sumes that agents can be partitioned into a finite number of groups, with all members of a group
sharing the same latent characteristics. In practice, this requires researchers to assign agents to
groups, typically via a clustering procedure, and then estimate group-specific productivities and
intergroup complementarities. A similar approach is adopted in Lei and Ross (2024). These mod-
els introduce greater flexibility in the interaction function relative to TWFE and have delivered
valuable empirical insights (Weigel et al., 2024; Mourot, 2025), but rely on the grouped hetero-
geneity assumption. By contrast, the approach developed in this paper offers a feasible way to
introduce complementarities into two-sided interactions without relying on grouping.

Concerns about complementarities have also surfaced in many TWEFE applications. A com-
mon strategy to justify their exclusion has been to estimate a saturated version of the model,
compare R* values, and conclude, based on the typically small changes observed, that comple-
mentarities are not quantitatively important (Card et al., 2013; Song et al., 2019; Fenizia, 2022;
Adhvaryu et al., 2024). However, Kline (2024) shows that these R?> comparisons can be mislead-
ing and argues that complementarity patterns are better detected by focusing on cycles in the
matching network. Building on this insight, this paper develops a procedure to formally test the
absence of complementarities, providing a formal way to assess the assumption at the core of the
TWFE model.

Worker-firm interactions are the most common application for this TWFE model (Abowd
et al., 1999; Card et al., 2013; Kline, 2024), yet modeling labor markets in this “reduced form”
way has faced criticism (Eeckhout and Kircher, 2011; Hagedorn et al., 2017; Lopes de Melo, 2018;
Eeckhout, 2018). These concerns extend to the BI framework as well. Still, the framework remains
valuable: both in other domains where its structure may be more credible (as in the empirical
illustration) and as a foundation for re-examining labor markets under alternative, potentially
more realistic, restrictions than those implied by the TWFE model.

Related developments in balanced unit-time panel settings show the value of modeling inter-
actions beyond modularity. The model in Tukey (1949), for example, already incorporated com-
plementarities more richly, and many recent contributions extend this idea using factor models
or nonparametric interaction structures (Bai, 2009; Freyberger, 2018; Freeman and Weidner, 2023;
Sbai Sassi, 2024; Armstrong et al., 2025). Two differences distinguish the BI framework from clas-

sical panels. First, panel models typically focus on estimating coeflicients on observed regressors,



whereas the BI framework aims to recover the interaction function and the fixed effects them-
selves. Second, panel analysis usually relies on observing all unit-time combinations, while the
BI framework is defined over incomplete matching networks in which only a subset of possible
matches is observed. As a result, the structure of the matching network is central to both identifi-
cation and inference in the BI framework, in contrast to panel settings where it is fixed by design
and excluded from the modeling analysis.

Because of this crucial role of the matching network, this paper also contributes to the liter-
ature on network econometrics. For identification, as in Bramoullé et al. (2009), Graham (2017),
and De Paula et al. (2018), I impose assumptions on the observed graph to ensure that parameters
can be identified, using a strategy that eliminates nuisance parameters to identify the interaction
coefficient, paralleling the approach of Jochmans (2017) for multiplicative models. For inference,
I consider an asymptotic regime in which the graph grows without requiring the number of real-
ized links to increase proportionally with the number of potential links, and allowing the number
of edges per node to remain bounded. Most existing inference results for sparse networks assume
degrees (numbers of edges per node) that may diverge with network size (Jochmans and Weidner,
2019; Cai, 2022). Exceptions that accommodate bounded-degree graphs, such as Verdier (2020)
and Auerbach et al. (2025), do not focus on parameters governing interactions. By explicitly al-
lowing for bounded degree, the present analysis better reflects the structure of many real-world
datasets on two-sided interactions and clarifies how the matching network affects the precision

of BI estimators.

1.2 Paper Structure and Notation

The remainder of the paper is organized as follows. Section 2 introduces the BI framework, the
Tukey model, and its extensions studied in this paper. Section 3 derives necessary and sufficient
conditions for parameter identification in the Tukey model and its extensions. Section 4 turns to
estimation in the Tukey model, mostly focusing on the estimator for the interaction parameter
and its asymptotic properties. Section 5 presents an empirical illustration, showing how the
Tukey model can be used in practice and how it provides additional insights into the interaction
function. Section 6 reports Monte Carlo simulations assessing the finite-sample performance of
the estimator. Section 7 concludes.

Throughout the paper, lowercase letters denote scalar parameters or quantities specific to an
individual agent, typically scalars but possibly vectors when productivities are multidimensional
(e.g., a; represents the latent productivity of worker i). Uppercase letters denote sets (e.g., a; € A,
where A is typically a compact metric space). Bold symbols denote tuples: for example, a denotes

the collection (ay, ..., ar).



2 Models

I present the Bipartite Interaction (BI) framework in the context of the labor market, where in-
teractions involve workers and firms. This setting serves as a concrete example for exposition,

but the framework itself is general and applies to any two-sided environment.

2.1 Bipartite Interaction Framework

Let I € N and J € N denote the number of workers and firms, respectively. Each worker i has a
latent deterministic productivity @; € A, and each firm j has a latent deterministic productivity
; € ¥, where A and ¥ are compact subsets of R%. Let & = (ay,...,a7) and ¢ = (¢,..., 1))
denote the collections of these productivities.

The potential outcome of the interaction between worker i and firm j, for example the wage

worker i would receive if employed by firm j, is

yij = flay;) +nijs
—_—
0ij
where f: AX ¥ — R is the interaction function and 7;; is a mean-zero random term. Define
0ij = f(ai, ¥;) as the deterministic component of the outcome, equal to E[y;;], determined by
the interaction function and the productivities of the matched agents. To focus on f, I omit
covariates. Incorporating covariates in the BI framework is a valuable extension not considered
in this paper.

To study the properties of f, it is useful to consider the role of its cross-partial derivative,
which leads to the notions of modularity and complementarities. I formally define modularity
in Appendix A.1. Intuitively, when ; and y; are scalars and f is differentiable, the interaction
function is modular when the cross-partial derivative of f is zero, supermodular when it is non-
negative, and submodular when it is nonpositive. This is closely related to complementarities. I
say that an interaction exhibits complementarities when the cross-partial derivative is nonzero,
which I call positive or negative when this derivative is positive or negative, respectively.

The potential outcome y;; is defined for all worker-firm pairs, representing the outcome that
would be realized if match (i, j) occurred, whether or not it is observed in the data. In practice,

only a subset of matches is realized, and y;; is observed only for some pairs. Define

1, if y;; is observed,
Dl‘ =
0, otherwise,



as the indicator of observed matches, treated as fixed in the analysis, and collect them in O;; =
{(i,j) : Djj = 1}.

Let Gy = ([I], [J], Ory) be the bipartite network linking worker i to firm j whenever D;; = 1.
Gy is bipartite because its nodes are partitioned into two disjoint sets, workers and firms, with

no edges within the same set.

Definition 1. (Matching Network) The matching network Gy is the bipartite graph with node sets
[I] and []] and edge set Oy = {(i, j) : D;j = 1}. An edge (i, j) indicates that y;; is observed.

Figure 1 shows an example with 5 workers (purple), 3 firms (green), and 6 edges, each repre-
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Figure 1: Matching network with nodes colored by type: workers in purple and firms in green. In this ex-
ample, I =5, ] = 3, and the set of observed matches is Oy = {(i1, j1), (i2, j1), (i2, J2), (i3, j2), (is, j2), (is, j3) }.

The fact that worker i,, for example, is linked to two firms (j; and j;) does not imply that
the matches occur simultaneously. The matching network is constructed over a chosen time
window, which may span several years, and each edge can correspond to a different period: i,
may be employed by j; in one year and by j, in another. The BI framework is static, abstracting
from the timing of moves, so it does not matter whether the match with j; occurs before or after
the one with j,.

The matching network is deterministic: the BI framework does not model its formation,
and the structure of Gj; is taken as given. The only source of randomness in the model are
the terms {7;;}(;jco,;» one for each observed outcome. These terms are mutually independent,
mean-zero, and may have pair-specific distributions, allowing for heteroskedasticity. Since Gy
is non-random, whether the match (i, j) is observed does not depend on 7;;, making the random
term exogenous.

For any realized match (D;; = 1), the model considers only a single outcome y;;. If repeated
observations of the same worker-firm pair are available, they can be averaged to yield a single

yij, leaving the analysis unchanged.



Parameters of interest. The primitive parameters of the model are the interaction function
f and the productivity vectors a and @. Recovering f allows researchers to characterize how
worker and firm productivities map into the outcome. A central question is whether an agent’s
marginal productivity depends on the characteristics of the other agent in the match, and, when
this occurs, to describe the nature and pattern of such complementarities. The productivity vec-
tors @ and g, once linked to additional information on workers and firms, shed light on the
determinants of productivity differences. For example, regressing & on worker demographics
reveals which observable traits drive variation in worker productivity.

Together,  and g permit the study of assortative matching, the tendency of workers and
firms with similar relative productivities to pair together. A common measure of sorting is the
correlation between a; and /; across observed matches: one constructs a vector containing «; for
each match (i, j), a second vector with the corresponding /;, and then computes their correlation.
A positive value indicates positive sorting, whereas a value near zero or negative suggests weak
or reverse sorting.

Joint knowledge of f, a, and @ also enables decomposing outcome variance, quantifying
the shares attributable to worker heterogeneity, firm heterogeneity, and their interaction. These
quantities further allow measuring factor misallocation by comparing observed matches to the
efficient allocation, and support counterfactual analyses in which workers are reassigned across
firms.

These examples illustrate the wide range of parameters of interest that can be derived from
f, a, and  as primitive inputs. A comprehensive treatment of all such parameters is beyond the
scope of this paper. The focus here will be on primitive f, ar, and ¢ under different assumptions on

f and Gyj, occasionally using selected derived quantities to highlight key features of the results.

Functional specifications. Imposing restrictions on the interaction function within the BI
framework yields distinct models. I focus on three specifications: the Tukey model, the BLM
model, and the seriation model. The next sections describe each of these models and discuss
their economic interpretation. Appendix A formalizes their connection to shape restrictions on

f, showing how their functional forms emerge from broader assumptions.

2.2 Tukey Model

The cross-partial derivative of f captures the complementarity structure of the interaction func-

tion in the BI framework. A natural way to introduce flexibility is to assume that this cross-partial



derivative is constant, summarized by a single parameter. This yields the specification
0ij = ai + Y + Poith, (Tukey model)

with fy € B C R compact. Irefer to this as the Tukey model, after the statistician John Tukey, who
studied an analogous functional form in two-way ANOVA to test whether two categorical factors
affect the response additively (Tukey, 1949; Ward and Dick, 1952; Simec¢ek and Simeckova, 2013).
In that setting, the focus is on testing the null hypothesis f; = 0 under restrictive assumptions
(homoskedastic, normally distributed errors 7;; and complete matching network Gyy), and no
attention is given to the estimation of the parameter itself.

Conversely, in the BI framework, the interaction parameter f, in the Tukey model acquires
a direct economic meaning. It is the constant cross-partial 8*f/dady, capturing all departures
from modularity and governing the complementarity pattern between the two productivities.

Despite its parsimony, where the entire complementarity structure is summarized by a single
parameter, the Tukey model is flexible enough to encompass supermodular (5 > 0), submodular
(fo < 0), and modular (B, = 0) interaction functions. The sign of f, determines the direction
of complementarities, while its magnitude reflects the relative weight of the multiplicative com-
ponent compared to the additive one: as |f| grows, the role of the match itself becomes more

important.

2.2.1 Tukey as Extension of TWFE Model

When Sy = 0, the Tukey model reduces to the widely used TWFE specification, in its baseline

form without covariates:
91']' =aqa;+ l//j. (TWFE model)

In the TWFE model, the cross-partial derivative 8*f/dady is zero, so the interaction function
is modular and complementarities are ruled out by assumption. The marginal contribution of a
worker (firm) is independent of the firm (worker) they are matched with and remains constant
across all matches. Under modularity, for a fixed set of matched agents, total output depends
only on individual productivities and is invariant to the assignment of matches: any allocation is
efficient.

While the assumption of no complementarities is restrictive, especially given the emphasis in
economic theory on complementarities as a driver of sorting patterns such as positive assortative
matching (Becker, 1973; Shimer and Smith, 2000), its appropriateness depends on the empirical

setting and the research question. In practice, the TWFE model is often viewed less as a literal



description of interactions and more as a tractable approximation to richer structures (Abowd
et al,, 1999; Card et al., 2013). The nesting of TWFE within the Tukey model makes it possible
to assess when this approximation is likely to be informative and, conversely, when ignoring

complementarities may lead to misleading conclusions; see Remark 2 for details.

2.3 Beyond Tukey Model

The Tukey model introduces complementarities in a simple and interpretable way. To capture
richer complementarity patterns, one can relax its restrictions and consider more flexible inter-
action functions: the BLM model allows the interaction parameter to be firm-specific, accom-
modating heterogeneity in complementarities across firms; the seriation model provides a fully
nonparametric alternative, imposing only monotonicity and leaving the cross-partial derivative

unrestricted.

2.3.1 BLM Model

Rather than modeling firm productivity as a scalar, suppose instead that each firm is characterized

by a productivity vector 1; = (b;, a;). This leads to the specification
0ij=aj+bja;, (BLM model)

where each firm is endowed with both an intercept and a slope, each varying across firms.

This interaction function is the one studied by Bonhomme et al. (2019), which motivates the
label BLM model. In their approach, the functional form is embedded in a grouped setting, where
all firms and workers within a group share the same latent characteristics. In the BI framework,
by contrast, the BLM model refers to the case in which each group consists of a single worker or
a single firm.

The BLM model nests the Tukey model as a special case: when b; = 1+ fya; for all j, or
equivalently fy = b"a—;l, the specification reduces to the Tukey one, with /; = a;. The BLM model
can thus be viewed as a generalization of the Tukey model, where the slope parameter capturing
complementarities varies across firms. This additional flexibility allows researchers to distinguish
a firm’s intrinsic productivity a;, which enters the model in levels, from its capacity to extract
value from workers and exploit complementarities, governed by b;. Unlike the Tukey model,
which implicitly ties these two roles together, the BLM model permits them to differ, thereby en-
abling empirical investigation of whether more productive firms are also those in which workers’

marginal productivity is higher.
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2.3.2 Seriation Model

The BLM model imposes a specific parametric form on the interaction function. As a benchmark,
it is useful to also consider a specification that removes all parametric restrictions on the cross-
partial derivative and allows for fully flexible complementarities. The natural analogue comes
from nonparametric regression: when the interest is in learning E[Y|X] nonparametrically from
observations of continuous random variables Y and X, some regularity assumptions are needed,
typically smoothness. Similarly, in the bipartite interaction setting, some regularity condition on
f is necessary to ensure that the data are informative.

I retain scalar productivities and impose a monotonicity assumption on f, leaving the cross-

partial unrestricted:
0ij = fm(ai, ¥)), (Seriation model)

with f,: A X ¥ — R increasing in both arguments. The monotonicity assumption in a bipartite
network setting connects directly to seriation problems in statistics (Flammarion et al., 2019) and
to matrix-completion approaches for bivariate isotonic matrices under unknown permutations
(Mao et al., 2020). Outside the bipartite setting, it is also related to nonparametric latent-space
models for network formation; see, for example, Gao (2020) and references therein.

Monotonicity is a common shape restriction in economics (see the survey in Chetverikov
et al. (2018)). In this context, it requires that the ranking of average outcomes produced by two
workers (firms), when matched with the same firm (worker), is preserved across all matches. This
property holds, for example, in the TWFE model.

The seriation model imposes no parametric restriction on f;,: when it is twice differentiable,
monotonicity ensures constant signs for the partial derivatives but imposes no constraint on the
cross-partial derivatives that capture complementarities. As a result, the complementarity pattern
is highly flexible: the same firm can exhibit supermodular or submodular behavior depending on
the productivity of the worker it is matched with. This is not possible in the BLM model, where

the cross-partial derivative is fixed for each firm and does not vary across workers.

2.4 Trade-off in BI Framework

The three models described above, together with the TWFE model, trace out a spectrum within
the BI framework. At one end lies the fully modular TWFE model, which rules out complemen-
tarities altogether. At the other end is the seriation model, which only imposes monotonicity
and allows complementarities to vary freely across matches. The Tukey and BLM models sit

between these extremes: they restrict the complementarity structure parametrically, but retain
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more flexibility than the TWFE model.

A second dimension of variation arises from the matching network Gy, which encodes the
observed links between workers and firms. In the most informative case, Gy; is complete, with
D;j = 1 for every pair. At the opposite extreme, the graph may be sparse (with far fewer links
than the maximum possible) and fragmented, with each firm linked to only a handful of workers,
and vice versa.

Together, the interaction function f and the network G;; determine what can be learned
from the data. The function f and the dimensions I and J dictate how many parameters must
be recovered, while the structure of Gy; governs how much information is available. This creates
a trade-off: richer flexibility in f requires stronger assumptions on Gyj, while sparser networks
can only be informative under more restrictive assumptions on f.

This trade-off is asymmetric. The function f is unobserved and summarizes the latent inter-
action between workers and firms; Gj; is observed and can be inspected directly. Restrictions on
Gyj can therefore be verified in the data, while restrictions on f cannot. For the TWFE model,
Abowd et al. (1999) and Jochmans and Weidner (2019) provide conditions on Gj; for identifying
and, under additional assumptions, estimating the productivity parameters. For the Tukey, BLM,
and seriation models, there are no results that allow the matching network to be incomplete. In
the next section, I derive the necessary and sufficient conditions that link the structure of f with
the shape of Gy, extending identification results to incomplete and possibly sparse graphs. These
conditions involve some requirements on the matching network Gy;. For each requirement, I will
also briefly assess its plausibility in the context of employer-employee data.

In applications, the researcher can proceed in two steps. First, select the restriction on f that
best fits the economic environment. Then, use these results to check whether the observed Gy
satisfies the corresponding conditions. When the focus is on point-identification, three outcomes
are possible: (i) the parameters are not identified; (ii) they are identified but not consistently
estimable; (iii) they are both identified and consistently estimable. Clarifying which case applies
is essential for understanding what questions the data can credibly answer. Naturally, the richer

and more connected the graph, the wider the scope of questions that can be addressed.

3 Identification

I analyze identification in the Tukey, BLM and seriation models. Section 3.1 introduces the notion
of identification adopted for the BI framework. Sections 3.2, 3.3, and 3.4 present the identification
results for the three models. Finally, Section 3.5 revisits the trade-oftf between the flexibility of

the interaction function and the structure of the matching network in light of these results.
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3.1 Identification in BI Framework

I adopt the classical notion of point identification from Koopmans (1949), which requires that
the model parameters be uniquely recoverable from the distribution of observables. In the BI
framework, the observables are the collection {y;;}; j)eoy;- Hence, for identification purposes, I
can treat E[y;;] = 6;; as known for each observed match.

Formally, I study identification through the noiseless map

(f, @, 9.Grj) = 00 = {0} (i, j)c0,»

where (f, &, y) are unknown and the graph Gj; is known. The parameter vector (f, &, ) is

point-identified if the map

(f,a,9) — 0o

is injective: that is, whenever parameters (f, a, ) and (f’, &', ") generate the same 6y, they
must coincide exactly.

In practice, a parameter is identified if and only if it can be expressed as a function of 6¢: this
is the equivalence I will use to establish identification in the proofs.

This definition deliberately abstracts from sampling noise and treats the distribution of each
y;j as known, even though in applications each match is typically observed only once. While such
a notion does not distinguish between parameters that can or cannot be consistently estimated
in the presence of error terms 7;;, it provides a fundamental benchmark: if a parameter is not
identified in the noiseless model, then no estimator can recover it. Conversely, whenever a pa-
rameter is identified in this sense, it warrants further analysis to determine whether, and under
what conditions, consistent estimation is feasible.

A location normalization is often necessary, since the absolute levels of a and g are not
uniquely determined by the observables. In the TWFE model, for example, adding a constant to
all a; and subtracting it from all ¢; leaves 6o unchanged; the same invariance holds in richer
specifications with complementarities, where shifts in @ can be offset by changes in g and f
without altering 6p. To fix the reference level and ensure point identification, a normalization
such as }};@; = 0 or a; = 0 is imposed. Whenever such a normalization is required, I state it

explicitly and adopt the form that yields the clearest formulas.

Remark 1. (Partial Identification) This paper focuses on point identification as a starting point
for studying flexible complementarity patterns in the BI framework. The same noiseless approach
can, however, be extended to partial identification, where the identified set for (f, at, ) is given by

the set of counterimages of the observed 0. Because matching networks are often sparse and the
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conditions for point identification difficult to satisfy, partial identification results provide a way to
extract meaningful information about the underlying economic structure even when point identifi-
cation fails. Extending the BI framework in this direction appears hence especially promising, and
future work could build on recent advances such as Crippa and Fedchenko (2025), who study partial

identification in the distinct but related pairwise interaction model.

3.2 Identification in Tukey Model

The Tukey model introduces complementarities in the interaction function through a single pa-
rameter, f, which represents the constant cross-partial derivative and fully characterizes f. I
present the identification results in two steps: first, the identification of f; second, the identifi-

cation of a and .

3.2.1 Identification of f,

Identifying f3, requires additional structure on the matching network Gy;. I begin by recalling the

notion of a cycle in a bipartite graph.

Definition 2. (Cycle in the Matching Network) In the bipartite graph Gr; = ([1], [J], Ory), a cycle
of length 2K (K > 2) is a closed alternating sequence of workers and firms

i1, j1, 82, J2o -+ o 0K JKG 11

such that, foreachk = 1,..., K, (ik, jk) and (ix+1, ji) belong to Oy (withigy = i1), and all iy, . .., ix

and ji, ..., jx are distinct.

The graph in Figure 2a contains no cycles: no path starts and ends at the same node while
traversing distinct edges. By contrast, adding an edge between i; and j,, as in Figure 2b, creates
the closed path iy, ji, iz, jo, i1, which forms a cycle of length 4.

The key condition required for identification of f is given in Assumption 1.
Assumption 1. (Informative cycle) The matching network Gyj contains a length-4 cycle iy, jy, iz, j2

such that o, # a;, and y/;, # yj,.

Assumption 1 requires the presence of a 4-cycle in which both workers and firms differ in pro-
ductivity. Such heterogeneity is crucial: without it, the outcomes along the cycle would not vary,
and the cycle would provide no information about f;,. When heterogeneity is present, however,

the cycle reveals contrasts across matches that make the interaction parameter point-identified.

Theorem 1. (Identification of fy) Under the Tukey model, Assumption 1 is sufficient for identifica-

tion of Po. If the matching network contains no more than one cycle, it is also necessary.
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Figure 2: Two examples of matching networks: (a) a network without cycles, and (b) a network containing
a cycle of length four. In panel (b), the cycle is formed by the sequence of nodes iy — j; — iz — jo — ij.

Identification of S hence requires the presence of a cycle in the matching network, and if
that cycle is unique, it must be of length four. The proof (Appendix H.1) shows that outcomes
from a cycle of length 2K generate a degree-(K — 1) polynomial in f, with coefficients given by
known functions of 8. The identification set consists of the roots of this polynomial. When the
network contains at most one cycle, point identification requires K = 2, i.e. a cycle of length 4.
More generally, a cycle of length 2K yields an identification set with K — 1 elements. If multiple
longer cycles are present, the intersection of their identification sets can reduce to a singleton,
achieving point identification.

The role of cycles in detecting departures from modularity was previously noted by Card et al.
(2013) and discussed by Kline (2024), though in those cases cycles were used as a diagnostic device
rather than as a source of identification for an interaction parameter.

In the labor market setting, Assumption 1 requires some degree of worker mobility across
firms. Because each worker can be matched with only one firm at a time, the multiple links needed
for a cycle arise only when workers change employers. The condition therefore, requires that, for
some pair of firms, at least two movers exist, and that both the workers and the firms involved
differ in productivity. This is not especially restrictive: labor markets are typically segmented
into local or sectoral clusters, and when one worker moves between two firms, the likelihood
of additional movers between the same firms is higher than under random matching. Evidence
supports this: in the application of Kline (2024), for instance, about 55% of firms belong to at least

one cycle.

3.2.2 Identification of o and y.

Once f is identified, the productivity vectors & and g in the Tukey model can be identified under

an additional condition on Gij.
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Assumption 2. (Connectedness) The matching network Gy; is connected: for any two nodes (work-

ers or firms) in Gyj, there exists a path (i.e., a sequence of nodes linked by edges) joining them.

The graph in Figure 3a violates Assumption 2, since no path exists, for example, from node iy

to node is. Adding an edge between iy and js, as in Figure 3b, makes the graph connected.

' \. il \.
is J1 iy J1
[ @
[
(b)

i3 J2 i3 J2
ig ig

is @ @ Js is
(@)

J3

Figure 3: Two examples of matching networks: (a) a non-connected network, and (b) a connected network,
which satisfies Assumption 2.

The identification result for & and g in the Tukey model is reported below.

Theorem 2. (Identification of & and @ in the Tukey model) Under the Tukey model and the
normalization a;, = 0, if Py is identified, Assumption 2 is necessary and sufficient for identification

of @ and y.

Theorem 2 extends the classical identification result for the TWFE model: it requires knowl-
edge of fy, but allows this parameter to differ from zero. The proof proceeds by first showing that,
for each observed match, one can construct a function of 69 and the identified f, that equals the
product of known functions of the corresponding worker and firm productivities. Connectedness
of Gy then guarantees that all worker and firm effects can be recovered up to the normalization,
completing the identification argument.

In labor market applications, the matching network is rarely fully connected, especially over
short time horizons. A common practice is therefore to restrict the analysis to the largest con-
nected component. For example, in the West German labor market studied by Card et al. (2013),
the largest component contains over 95% of workers and 90% of firms. Similar firm coverage is
reported by Bonhomme et al. (2023) for Austria, Italy, Sweden, Norway, and the United States,
although worker coverage is often much lower, in some cases falling below 50%.

Theorems 1 and 2 highlight the additional requirements introduced by allowing complemen-
tarities. Relative to the TWFE model, the Tukey model imposes only a modest cost: the same
connectedness condition is needed, with the sole extra requirement that the graph contain at
least one informative cycle to identify fy. This result exploits the fact that f is a global parame-

ter: it governs the entire interaction function f and does not vary across specific workers or firms.
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Hence, it can be identified using local information in Gj; and then applied across all matches to
recover & and .

The Tukey model, therefore, offers a simple and flexible way to incorporate complementarities
into the BI framework, while requiring only minimal conditions on the matching network for
identification. By contrast, as I show in the following sections, more general specifications such
as the BLM and seriation models demand substantially stronger network requirements, which

are typically stringent and rarely satisfied in applications.

Remark 2. (TWFE as Approximation) The TWFE model is often defended on the grounds that
the benefits of departing from modularity are limited, making it a useful approximation even when
interactions exhibit some complementarities. The nesting of TWFE within the Tukey model, combined
with the focus on the noiseless case, allows this claim to be evaluated formally. In Appendix B,
I study when the TWFE specification provides a good approximation to interactions governed by
the Tukey model. The results show that relying on TWFE can yield misleading conclusions once
complementarities play a non-negligible role. In particular, I derive the bias implied by the TWFE
specification and show that, for example, in settings with a supermodular interaction function and
strong positive sorting, the sorting captured by TWFE can be zero. In such cases, hence, the TWFE

model would incorrectly suggest the absence of sorting.

3.3 Identification in BLM Model

The BLM model extends the BI framework by allowing each firm to have its own interaction
parameter. Bonhomme et al. (2019) study this specification under the assumption that workers
and firms are partitioned into groups, with all agents in a group sharing the same productivity.
Grouping substantially reduces the effective number of nodes in the matching network, since
each group can be represented as a single node connected to many others. Under the assump-
tion that the matching network is complete, Bonhomme et al. (2019) show that «;, a;, and b; are
point-identified. Completeness, however, is stronger than necessary. In what follows, I estab-
lish a weaker connectivity condition on Gy that still ensures identification of the productivity
parameters.

To formalize this condition, I introduce the following property of the bipartite graph Gy;.

Definition 3. (Seed-and-Snowballs Connectivity) A bipartite graph Gy satisfies Seed-and-Snowballs
connectivity if there exists a “seed” firm jo € ] from which one can reach all nodes by iterating the

following steps:
1. Seed. Set Sé ={jo}.

2. Snowball. Forn=0,1,2,...:
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(a) Add toSL all workers connected to at least one firm in Si:
St={iel: deggr (i) > 1}.
(b) Add to S£+1 all firms connected to at least two workers in SL:
Sl =SpU{je:degg(j) > 2},

with degq(i) indicating the number of links between node i and nodes in S. If for some N the process
yields SL = J and SJIV = I, the graph satisfies the property.

Intuitively, the procedure alternates between (i) adding all workers linked to any firm already
in the snowball and (ii) adding all firms connected to at least two of the workers in it. The “two-
worker” condition guarantees that each newly added firm lies on a cycle, and that these cycles
overlap so the snowball can propagate through the graph. In Figure 4a, the property fails because
firm js is not part of any cycle. Adding the edge (is, j;), as in Figure 4b, creates overlapping cycles
and makes the graph Seed-and-Snowballs connected.

To verify this, run the iterative procedure with j; as the seed, so that Sg = {j1}. First, include
the workers linked to the seed: S(I) = {iy, iy, i5}. Then, add firms linked to at least two of these
workers: S{ = {J1, jo}- Repeating the process yields S{ = {iy, iy, is, i3, i4 } and Sg = {1, j2, j3}. Since

the snowball eventually reaches every node, the graph satisfies Seed-and-Snowballs connectivity.

Iy J1 iy J1
[
[

J2 is @ J2

i3

Ig Iy

is J3 is J3

(@) (b)

Figure 4: Two examples of matching networks: (a) a network that does not satisfy Seed-and-Snowballs
connectivity, and (b) a network that does.

To the best of my knowledge, this property has not been discussed in the existing network
literature. Appendix C shows that it is sufficient for the form of connectivity required by Kline
et al. (2020) to ensure the validity of their variance estimator in the TWFE model, where the
matching network must remain connected after removing any single worker node along with its

incident edges.

18



As in the Tukey model, Seed-and-Snowballs connectivity must be complemented by sufficient
heterogeneity in the productivities appearing in the restrictions to obtain the key condition for

identification.

Assumption 3. (Informative Seed-and-Snowballs) The matching network Gj; satisfies Seed-and-
Snowballs connectivity, with the additional requirements that: (i) when computing degg (i), only
edges to firms with non-zero slopes are counted; and (ii) when computing deggi (j), only edges to

workers with distinct productivities are counted.

Intuitively, since the BLM model generalizes the Tukey model by allowing a firm-specific
interaction parameter, Assumption 3 extends Assumptions 1 and 2. It requires that each firm lie on
a cycle involving heterogeneous productivities, and that these cycles overlap at least at one node.
This overlap enables information to propagate through the network and ensures identification of

the parameters in the BLM model, as formalized in the next theorem.

Theorem 3. (Identification in the BLM model) Under the BLM model and the normalization a;, =

bj, = 1, Assumption 3 is necessary and sufficient for identification of &, a, and b.

While Assumption 3 is necessary for identification, it demands a matching network far richer
than what is typically observed in applications. In the labor market context, for example, Kline
(2024) finds that nearly half of the firms in their data are not part of any cycle, implying that their
productivities cannot be identified. This is only a lower bound: being part of a cycle is not enough,
since the cycles must also share at least one node. As a result, even under favorable conditions, the
BLM model would fail to identify the productivity of a large share of firms, limiting its empirical
applicability.

Theorem 3 thus highlights that the additional flexibility of firm-specific complementarities
comes at a steep cost: the matching network must satisfy a stringent requirement that is rarely
met in practice. Point identification in the BLM model is therefore challenging in most empirical
settings with two-sided interactions, unless one imposes additional dimension-reduction restric-

tions such as those in Bonhomme et al. (2019).

3.4 Identification in Seriation Model

One might ask whether the restrictive graph condition found for identification with the BLM
model is driven not by its richer interaction function, but by the use of multidimensional firm
productivity, which introduces additional parameters.

The seriation model provides an alternative: it allows fully flexible complementarities while

retaining scalar productivities. Here, the interaction function is left entirely nonparametric. As
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the next proposition shows, this flexibility comes with a sharp limitation: f;,, @, and g can be

recovered only up to strictly monotonic reparameterizations.

Proposition 1. (Lack of cardinal identification in the seriation model) Model ( f,,, &, ¢, G1j) can

be identified only up to any strictly increasing reparameterization of & and .

Proposition 1 implies that only the ordinal information (the ranking) of worker and firm pro-
ductivities can be identified. Cardinal differences are not preserved under strictly monotonic
transformations, so f;,, @, and g cannot be separately identified.

While this prevents recovery of productivity levels, the ranks of {a;} and {;}, and thus
the rankings of the vectors @ and g, are still identified. Rank-based methods can therefore be
employed to study sorting patterns and the determinants of productivity ranks without imposing
cardinal structure.

To state an identification condition for the seriation model, I first introduce the notion of

within-side diameters.

Definition 4. (Within-side Diameter) The within-side diameters of a graph Gj; are the largest
shortest-path distances between any two nodes on the same side of the bipartition: letting d(u,v) be

the number of edges in the shortest path between nodes u and v,
diamy(Gyy) = maxd(i,i’), diam;(Gyy) = maxd(j,j’).
ii’el JJ'Ee]

In the graph of Figure 4a, the within-side diameter for I is 4, as the shortest path from i;
to is spans four edges. For J, the diameter is 4, corresponding to the path between j; and js. In
Figure 4b, the diameter for J falls to 2 thanks to the shorter path j; — is — js, while the diameter
for I remains 4.

The following condition for identification in the seriation model directly involves the within-

side diameters.
Assumption 4. (Diameter 2) The matching network G has within-side diameters equal to two.

Assumption 4 requires that every pair of workers shares at least one common firm, and every
pair of firms shares at least one common worker. This ensures that all nodes on the same side
of the bipartition are linked through a single intermediary on the opposite side. The graph in
Figure 5a fails this property, as workers i3 and is have no firm in common. Adding the edge
(i3, j3), as in Figure 5b, creates the necessary connections and yields within-side diameters of
two.

The next result shows that a within-side diameter of two is exactly the connectivity needed

to recover the rankings of & and .
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Figure 5: Two examples of matching networks: (a) a network that does not satisfy Assumption 4, and (b)
a network that does, with within-side diameter equal to 2.

Theorem 4. (Identification of rankings in the seriation model) Under the Seriation model, As-

sumption 4 is necessary and sufficient for identification of the rankings of o and .

From an empirical standpoint, Assumption 4 is strong: it requires that every pair of workers
have at least one firm in common and that every pair of firms share at least one worker. In labor
market data, this would mean that any two workers have worked for the same firms, an unlikely
occurrence outside of small or highly interconnected markets. As with the BLM model, the seri-
ation model therefore has limited empirical applicability when the focus is on point identification.

That said, point identification is not always essential for extracting useful information from
the data. Even when Assumption 4 fails, the seriation model can still deliver partial identification
of the productivity rankings. Although I do not study partial identification in this paper, it remains
a promising direction to explore. Following the approach by Crippa and Fedchenko (2025), for

example, one could derive informative sets for the rankings of & and .

3.5 Identification Trade-off

When the identification conditions for the TWFE, Tukey, BLM, and seriation models are com-
pared, the trade-off introduced in Section 2.4 becomes clear: weaker restrictions on the interac-
tion function require richer structure in the matching network.

Theorems 3 and 4 show that the conditions for point identification in the BLM and seriation
models are unlikely to be satisfied in most empirical settings involving two-sided interactions.
By contrast, Theorems 1 and 2 demonstrate that the interaction parameter f, together with «
and @, can be identified under assumptions that are plausibly met in practice.

The Tukey model thus emerges as a more flexible yet tractable alternative to the TWFE model.
It is flexible because it accommodates complementarities, through the parameter f. It is tractable
because it imposes only mild requirements on the network, unlike its extensions and similarly to

the TWEFE. In the next section, I show that the additional interaction parameter can be consistently
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estimated under assumptions that are commonly satisfied by matching networks observed in

applications.

4 Estimation and Inference in Tukey Model

I study estimation and inference for the parameters of the Tukey model. Section 4.1 presents
the asymptotic setting used to analyze estimators in the BI framework. Section 4.2 introduces
an estimator for f, establishes its consistency, derives its asymptotic distribution, and shows
how it can be used to construct a test for the absence of complementarities. Section 4.3 then
considers the estimation of productivities & and . While I propose an estimator, I do not study
its properties; instead, I show how its analysis and the limitations it faces connect to those of the

existing productivity estimators in the TWFE model.

4.1 Large Sample in BI Framework

To study the large-sample properties of the estimators introduced below, I consider an asymptotic
setting in which both the number of workers I and the number of firms J grow large (I — oo,
J — o0). Information accumulates by adding new nodes to the bipartite graph, rather than by
repeatedly sampling matches along existing edges.

The analysis is hence based on an asymptotic setting in which the network expands. The
sequences of matching networks Gy, worker productivities ¢, and firm productivities g, are
taken as deterministic, and the set of observed matches Oy is allowed to vary with (I, J). Ran-
domness arises solely from the error terms {7;;} (i j)eo,;> Which are assumed independent across
matches.

This setup contrasts with stochastic network formation models, where the graph itself is ran-
dom. Instead, the analysis reflects empirical applications in which the observed labor market net-
work is treated as fixed, and inference concerns the role of unobserved shocks given this network
structure. Equivalently, the setting can be viewed as one where the network and productivities
are random, but inference is conducted conditional on their realization.

The role of the matching network in the asymptotic analysis mirrors its role in identification:
conditions on the sequence of graphs Gj; ensure the validity of the asymptotic results. These
conditions cannot be verified from a single observed graph. Instead, what matters is how the ob-
served structure relates to the properties required of the asymptotic sequence, to assess whether
the asymptotic results provide a good approximation to the finite-sample behavior.

In labor market applications, the large-I, large-J asymptotic setting is well-suited, as available

datasets often include millions of workers and firms. At the same time, the data are sparse: each
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worker is observed with only a handful of firms, and each firm with only a modest number of
workers. For example, in the U.S. labor market over a one-year horizon, a typical worker is
employed by one or two firms, while a typical firm hires only a few dozen workers. To capture
this structure, the asymptotic setting allows node degrees to remain bounded as I and J grow,

rather than requiring any worker to be linked with many firms or any firm with many workers.

4.2 Interaction Parameter f,

Recall the Tukey model:

Yij = & + i+ Poit)j + 1ijs

with E[#;;] = 0, and {n;;} (i j)co,, independent.

This section introduces an estimator for f, and analyzes its properties in the large sample
setting described above. Note that, despite Tukey (1949) and the following literature on non-
additivity in ANOVA consider this same model, they do not discuss any estimator for f, rather
focusing on directly testing the hypothesis f, = 0.

Theorem 1 shows that a single informative four-cycle suffices to identify fy. In the presence of
noise, however, estimation requires pooling information across many four-cycles present in Gy;.
It is therefore convenient to treat each four-cycle as an observational unit and impose conditions
on the sequence of matching networks that guarantee the number of distinct four-cycles grows
with I and J.

4.2.1 Estimator for f,

Index the four-cycles in Gi; by £ = 1,.. ., L. For clarity of exposition, I restrict attention to edge-
disjoint cycles, assuming that no cycles share an edge (but they can share one or two nodes). This
restriction is not essential, and information from overlapping cycles can also be aggregated, but
focusing on edge-disjoint cycles keeps the notation tractable.

Each cycle ¢ consists of two distinct workers {i, i;} and two distinct firms {j, j;}. For ex-
positional purposes, suppose labels are ordered so that a;, > ay and ¥;, > 7. Of course, these
labels are unknown to the researcher: they only observe the pairs in the cycle, not the underlying
productivities.

To work with the formulas below, the researcher must nonetheless assign distinct labels to
workers and firms in each cycle. At this stage, I leave the rule for assigning labels unspecified;
later, I propose a procedure that uniquely determines them.

Formally, the researcher assigns labels (i ,, i m) and (i, Jy m) to the worker and firm pairs
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{i¢, i7} and {je, j;}. Given this labeling, define

Ty = ﬂ;{ﬂw,
where
77;“ ._ 1: if (if,ﬂp i;’”f) = (it’a l;)’ ][l// . 1: if (jt’,ﬂ'[a j;’”[) = (jfs ]2),
[ . . . . . . [ T . . . . .
_1, If (lf,ﬂ[: lg,ﬂ;{) = (l}: lf)s _17 lf (][,71’53 J{I”ﬂ[) = (]23 Jf)

In words, 7, (77;?//) equals 1 when the assigned label i¢,, (jer,) corresponds to the higher-
productivity worker (firm), and —1 otherwise. Because productivities are unobserved, 7z, cannot
be directly chosen, but each labeling rule uniquely determines its value. For this reason, I refer
to the label assignment chosen by the researcher simply as 7.

For each cycle ¢ with labeling 7;, define

Avere = Yiewpjon, = Yif p domy = Yiewpdt, T Yitn din

Do e = Yiewpitm Yif g it my = Yitm it it i,

Intuitively, A, ; ,, compares the difference in outcomes between workers across firms, while Az .
contrasts two cross-products, each involving all four nodes in the cycle. Both statistics depend

on how workers and firms are labeled within the cycle, as shown by the following example.

Example 1. (Computing Al,t’,m and Ag,[m). Cycle t includes workers Alice and Bob, and firms
Canon and Dell. Alice earns 120 with Canon and 100 with Dell, while Bob earns 100 with Canon and
90 with Dell.

To compute Al;[,ﬂ[ and Az)[’m,, the researcher must first assign labels (i r,, i, ) to Alice and Bob,

and (je» g ,) to Canon and Dell. Each of the four possible assignments induces a value for ; and

Ty

determines the outcomes yi, . j, . , Yif vt Yimydpmy and Yif o imy and thus the corresponding values

ofﬁl,[m and Ag)[,m,. The rows in the following table summarize each assignment:

im  lpm,  Jome Jimy Yiewder Yier, Yimily, Yt Duem Daem W
Alice Bob Canon Dell 120 100 100 90 10 800 1
Alice Bob Dell Canon 100 90 120 100 -10 -800 -1
Bob Alice Canon Dell 100 120 90 100 -10 -800 -1
Bob Alice Dell Canon 90 100 100 120 10 800 1

Although there are four possible labelings, they generate only two distinct pairs (Al’(,m,, Az’[’”t,),

corresponding to the two possible values of 7, (which remains unknown to the researcher).
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With these statistics in hand, define the estimator

1 vL A
Z Z{’:] Al,[,f[[

1 L A :
T 2r=1 Do,

ﬂL,l‘[ =

The estimator ﬂAL,,T does not require estimating a or . As a result, fy can be estimated consis-
tently even when individual productivities cannot be, for example when each worker is observed
only a few times; see Remark 3 for details.

The estimator depends on the labelings (7, ..., 7). In a network with L cycles, different la-
beling combinations can generate up to 2* distinct estimators of 3. Such dependence on arbitrary
labeling is undesirable, since two researchers analyzing the same data could obtain different es-
timates solely because they chose different labelings. To remove this ambiguity, I later introduce
a procedure that selects a particular combination of labelings.

To see why f; » is an estimator for f, decompose Ay ¢, and Ay -, as:

Averm, = Drem, + €ny ey

Ao, = Dopm, + €yt

where
At em = Po(ai, — ai;)(lﬁjg - ‘//j;) TTe,
Noom = —(a, — o) (W, — ¥jy) 7,
and
envem = (Migje = Niyje = Migjy + M, j,{)?fz, (4.1)
enem = (Oijeni gy + O jiMicje = O Micsy = Oy Mitje + MigieMi gy = Migie iy ) e (4.2)

Here, the absolute values of Ay, and Ay, depend only on the model parameters, while
their sign is determined by the labeling ;. The random terms €a, ¢, and €a, ¢, are mean-zero
combinations of the four errors 7;;, with their sign again determined solely by 7,. This decompo-
sition highlights why averaging across many cycles reduces sampling variability: the error terms
{nij} are independent and mean zero across edges. Taking the ratio of these averages then can-
cels the common dependence on latent productivities (&, ) and on labelings, leaving only the
parameter f.

The next section formalizes this intuition and establishes that, under suitable conditions on

the sequence of graphs, error terms, and labelings, [?L,,[ converges almost surely to f.
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4.2.2 Consistency

To establish the consistency of ﬁAL,,,, I require the following conditions.
Assumption 5.

5.1 (Error Regularity) The error terms n;; are independent across all (i, j) and satisfy E[n;;] = 0,
Var(n;;) > C,; > 0, and E[|n;] 23] < M < oo for some § > 0 and uniform bounds C, and M.

5.2 (Cycles Growth) The sequence of matching networks Gyj is such that, asI — oo and | — oo,

L — oo.

5.3 (Cycles Heterogeneity) The sequences of latent productivities a1 and @ ;, and the sequence of

matching networks Gy are such that

1 L

UL = z Z((X,’[ - ait’,)(l//jf - 17&];)
=1

is bounded away from zero (up > C, > 0).

5.4 (Labeling Regularity) The sequence of cycle labelings {m;}-_, satisfies

L
1 a.s.
pex = 7 (@ = @) g = Y) 7 = 0,
=1

for some constant ¢, with |c;| > C, > 0. Moreover, the labeling signs {m;} are independent of

the error terms {n;;}.

Assumption 5.1 imposes standard regularity conditions on the error terms. Importantly, it
does not require the 7;; to be identically distributed and allows for heteroskedasticity: each error
may follow its own distribution, provided it has mean zero, is non-degenerate, and admits (2 + §)
moments. While the non-degeneracy and moment conditions are not strictly necessary for con-
sistency, they are needed for deriving the asymptotic distribution of the estimator in subsequent
results.

Assumption 5.2 concerns the sequence of matching networks and requires that the number
of cycles grows with the overall size of the network. The condition does not restrict node degrees
and is compatible with graphs G;; where degrees remain bounded: for example, no worker or
firm needs to appear in more than two matches. Since ,BAL,,[ treats cycles as the fundamental units
of observation, the assumption guarantees that the number of such units increases sufficiently to

justify asymptotic analysis.
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Assumption 5.3 requires that the average, across cycles, of the products of worker and firm
productivity differences remains bounded away from zero. Since this condition is formulated us-
ing ordered labels, it does not depend on the specific choice of labeling. It is closely related to
Assumption 1, which underlies identification, and guarantees the presence of systematic hetero-
geneity in productivities across cycles. Put differently, because p is an average of nonnegative
terms, requiring p, to stay strictly positive implies that a non-vanishing fraction of the summands
must themselves be bounded away from zero. This excludes degenerate cases in which hetero-
geneity vanishes asymptotically, requiring enough variation across workers and firms to make
the cycles informative.

Assumption 5.4 restricts the sequence of labelings. It rules out labeling schemes that drive
the average of A, ,, toward zero, since in that case both the numerator and denominator of the
estimator would vanish, making S, possibly unrecoverable. It also excludes labelings that are sys-
tematically correlated with the error terms, as such dependence would invalidate the averaging
argument underpinning the law of large numbers. The assumption does not prescribe a unique
labeling rule; rather, it specifies the conditions that any labeling must satisfy to be admissible,
allowing for both deterministic and stochastic labeling rules. In Section 4.2.4, I present one such
rule, based on observable instruments, which ensures the condition and provides a practically
implementable estimator.

Strong consistency of ﬁAL,,, for fy then follows from the strong law of large numbers, as stated

in the following theorem.

Theorem 5. (Strong Consistency) Under Assumption 5, asI — oo and ] — oo, the estimator ﬁAL,,T

is strongly consistent for f, i.e., ﬁAL,,, —%5 .

The assumptions on Gy required for consistency of [?L are relatively weak. For instance,
under the bipartite Erdds—-Rényi random graph model, Assumption 5.2 holds whenever the link
probability p;; satisfies VIJp;; — oo (see Appendix D for the formal definition of the model

and the derivation of this threshold). By contrast, ensuring that the graph is connected requires
VIJpiy

log(VIJ)

matching network needed for identification of @ and g automatically guarantees the one required

the stronger condition > 1. Hence, under the Erdés—-Rényi model, the condition on the
for consistency of [?L,,,.

The effective sample size for estimating f is L, the number of cycles, rather than the number
of observed matches. This parallels other settings in econometrics: in local linear regression, the
effective sample size is proportional to the number of observations times the bandwidth, while
in clustered data it is given by the number of clusters rather than the number of units.

In labor market applications, Assumption 5.2 is satisfied whenever the number of cycles grows
proportionally with the number of workers and firms, even if the graph consists of many discon-

nected local subgraphs. For instance, in the empirical setting of Kline (2024), the data contain
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roughly 750,000 workers, 70,000 firms, and 5,000 cycles: the number of cycles is large enough
that asymptotic approximations are likely to provide a good guide to finite-sample behavior.
The next step is to characterize the asymptotic distribution of ,BAL,,,, which provides the basis

for valid inference and for testing the absence of complementarities.

Remark 3. (No Need to Estimate Productivities) A key feature of ,BAL,,[ is that it achieves consistency
without requiring estimation of the productivity components a and @, which would demand many
observations of each worker and firm. This is in contrast to more standard approaches, such as the
iterative least squares procedure of Bai (2009), which estimates f jointly with unit-specific effects.
In that setting, the asymptotic behavior of the estimator for By depends on the properties of the
estimators for a and . By avoiding their estimation altogether, and directly isolating By, the cycle-

based estimator sidesteps this difficulty.

4.2.3 Asymptotic Distribution

The estimator ,BL,,[ is a ratio of averages, which makes its asymptotic behavior amenable to anal-

ysis via the Lyapunov Central Limit Theorem. To set up the argument, define

Urr, = €nytm + Po€nytms

with e, ¢, and ep, s, defined in Equations 4.1 and 4.2. The mean-zero composite error ug,
depends on fy, the four productivity terms, the labeling, and the four error terms associated with
cycle ¢.

With this notation in place, the asymptotic distribution of ﬁL,ﬂ can be derived.

Theorem 6. (Asymptotic Normality) Under Assumption 5, asI — oo and ] — oo,

\/f(ﬂé,n ~ho) 4 N(O 1)

where 0, = \/% Sk Var(u,,,) is the square root of the average variance of the composite errors

{uer,} across cycles, and pp, and c, are as defined in Assumptions 5.3 and 5.4.

The estimator ﬁAL,,, converges at rate VL, where L, the number of cycles, acts as the effective
sample size. In a complete bipartite graph, this corresponds to the rate v/IJ, since the edges can
be partitioned into % X % edge-disjoint four-cycles. An important implication is that [%LJ, remains
consistent even when one dimension, either I or J, is held fixed while the other grows.

In addition to the sample size, three scaling terms appear in the asymptotic distribution. The

first, 0,1, is the square root of the average variance of the composite error terms u; . Although
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these errors depend on the chosen labeling, their variances do not; hence ¢, is invariant to
labeling. It reflects only the variability of the underlying noise terms 7;;: greater noise in y;;
increases 0,1 and reduces estimator precision.

The second, p1, summarizes the heterogeneity in worker and firm productivities across cycles.
If workers and firms within cycles are too similar, y; is small and the estimator becomes imprecise.
By contrast, stronger heterogeneity makes py larger, yielding sharper estimates.

The third, c,, isolates the effect of labeling choice. It shows explicitly how different labeling
rules can affect the variance of the estimator, with some labelings increasing its precision relative

to others.

Feasible Scaling Factor Estimation. To make the asymptotic normality result operational

~2
O-u,L,n

-1 ZL: AZ £, ’
L =1 st
where —1 Sk Agyn consistently estimates yc, (as established in the consistency proof), and

62, _estimates o2 ,. A convenient choice for 62, _is the average of the squares of the estimated

for inference, the scaling factor ;Z‘—CL must be estimated. A consistent estimator is
T

residuals @ ;:

Z (Al,{’,ir + ﬂAL,JIAZ,f,Jr) ?

6'2 — l ﬁZ _ l
uLr L o — L
1

L
=1

L
=

whose consistency is established in the following proposition.

Proposition 2. (Consistent Variance Estimator) Under Assumption 5, as I — oo and ] — oo, the
. ~2 . . 2
estimator 6, | . 1s consistent for O,L

~2 2
Oulx ~ OulL

2.

Theorem 6, together with these feasible estimators for the scaling terms, yields valid asymp-
totic confidence intervals for fy. The next section introduces a practical procedure for selecting
labelings in each cycle, ensuring Assumption 5.4 holds, uniquely defining the estimator, and guar-

anteeing the validity of inference.

4.2.4 Rank-Based Labeling

Assumption 5.4 restricts how labels can be assigned within each cycle but does not prescribe a
) and

(Jeres Jy m) in each cycle, and show that it satisfies Assumption 5.4. As a result, the estimator with

specific rule. In this section, I propose a rank-based procedure for assigning labels (i, i; ,,

this rank-based labeling is consistent and asymptotically normal, and not dependent on arbitrary

labeling choices.
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Suppose the researcher observes some characteristics of workers and firms, denoted by z* =
(27, .. .,z}") and z¥ = (zlf, .. .,zjl’//), and treated as nonrandom. Labels in each cycle are then
assigned using these instruments according to the following rule.

Definition 5. (Rank-Based Labeling) In each cycle ¢, the labels (i¢,,, i; ”fz) and (je,z, ,» Jy mz) are

assigned so that

¥ ¥

: > z5 and z% >z,
lp e lf’,ﬂ[’z Jemy ](’,n(’z

20{

Under this rule, the worker and firm with larger instrument values are always labeled iy, ,

and ji r, ,, respectively. This induces the signs

Ty, = sign(zf; - zZ) , ﬂzz = sign(z}é - z}é) :
For expositional clarity, I exclude the possibility of ties in the instruments; when ties occur, they
can be resolved at random.
Let ﬂAL,Z denote the Rank-Based Labeling (RBL) estimator, defined using the rank-based label-
ing:

1 ZL A
A 1D, i
Pr.=— Lo oome (RBL estimator)

1 L A
7 21 Dot

The properties of ., depend on the choice of instruments z% and zV.

Consider first the oracle case in which the instruments available to the researcher coincide
exactly with the latent productivities & and . In this case, the induced labelings satisfy 7y, = 1
for all ¢, so that Assumption 5.4 holds with ¢, = 1. Such oracle instruments are, of course,
infeasible in practice, but Assumption 5.4 does not require ¢, = 1, just that it remains bounded
away from zero. Intuitively, this occurs whenever the instruments correctly rank the higher-
productivity worker and firm more often than not.

In applications, instruments should therefore be observable characteristics plausibly associ-
ated with latent productivities. For instance, years of schooling and firm size can serve as instru-
ments for & and g, as they are often strongly correlated with worker and firm productivity. By
contrast, outcomes themselves, though mechanically related to productivities, violate the exo-
geneity requirement, since they also depend on the error terms {7;;}. This means that, as shown
in Appendix E, using outcomes as instruments leads to biased estimates and invalid inference.

The next example provides a practical illustration of how labels are assigned.

Example 2. (Rank-Based Labeling in Practice). Consider two cycles. The first involves workers

Alice and Bob and firms Canon and Dell; the second involves workers Elizabeth and Fred and firms
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General Motors and Honda. To assign labels in each cycle, use years of schooling as an instrument

for workers, and the number of employees as an instrument for firms. The instrument values are:

Worker  z{ Firm zsz
Alice 16 Canon 170,000
Bob 14 Dell 110,000
Elizabeth 18 General Motors 160,000
Fred 12 Honda 190,000

Assign labels in each cycle according to the rank-based labeling, so that the worker with higher
schooling receives label iy ,, and the firm with more employees receives label j; 5, .. The resulting

labels and the corresponding cycle statistics are:

: : : : 7 7 ~ ~
lf,ll'[’z l;)”[’z J[,ﬂ'[’z Jt,’,ﬂ(’z Zi,ﬂ(,z ZZ’”[Z ij,ﬂ[,z j;’”[ ] Al,[,”[,z Az,f,m,z
Alice Bob Canon Dell 16 14 170k 110k 10 800
Elizabeth Fred Honda General Motors 18 12 190k 160k 20 900

This table, where each row represents a distinct cycle, is the analysis dataset: the estimator ﬂAL,Z

is the ratio of the averages of the last two columns.

To formalize the conditions that instruments must satisfy in addition to exogeneity, define

the averages

1 ¢ — 1% 1§L

— _ v . 14

T = I E Ty m =7 § Tz neny = T e 2
=1

and impose the following conditions on the sequences {x;,} and {JT;//Z}.
Assumption 6.

6.1 (Relevance) Instruments correctly rank workers and firms sufficiently often: there exist con-

stants cq, ¢y > 0 such that, for all sufficiently large L,

7% > cq v > cy.

6.2 (No Negative Association) Worker and firm instruments are not systematically opposed:

L
Z(ﬂgz ~7®) (zl, ~a¥) = 0.
=1

==
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6.3 (No Large Gap Penalty) Instrument ranks are not systematically misaligned with the magni-
tude of productivity differences:

ZLl ((OCig - Oti;)(l//jf - l//j;) - ;lL) (”ZZHZZ — ﬂa”l//) > 0.

=1

M~ =

Assumption 6.1 requires that the instruments contain useful information about the latent
productivities: the rankings they induce must align with the true rankings often enough. Perfect
accuracy is not necessary, and occasional misorderings are allowed, as long as the instruments
select the correct ordering in a sufficiently large fraction of cycles.

Assumption 6.2 rules out a systematic negative association between worker-side and firm-
side labelings. That is, it excludes the case in which the worker instrument tends to misorder
exactly when the firm instrument orders correctly (or vice versa). The restriction applies only on
average: isolated instances of such behavior are admissible provided they do not dominate.

Assumption 6.3 prevents a systematic association between large productivity gaps and mis-
labeling. Specifically, it rules out the possibility that cycles with large differences in worker-firm
productivities are disproportionately associated with incorrect rankings. This condition is mild:
in practice, misclassifications are more likely when productivity gaps are small, not when they
are large.

The next proposition establishes that, when the instruments satisfy Assumption 6, the rank-
based labeling 7, satisfies the condition required by Assumption 5.4. Consequently, the RBL

estimator ,BAL,Z achieves the asymptotic properties established in Theorems 5 and 6.

Proposition 3. (Rank-Based Labeling Validity) Under Assumptions 5.1, 5.2, 5.3, and 6, the rank-
based labeling m,, satisfies Assumption 5.4.

Proposition 3 ensures that the rank-based labeling delivers a well-defined estimator BL,Z with
the aforementioned asymptotic properties. This result allows ,BL,Z to serve not only as an esti-
mator of the interaction parameter but also as the basis for the construction of a formal test for
the absence of complementarities and hence for modularity of the interaction function in the BI

framework. The next section develops this test and studies its properties.

4.2.5 Test for Absence of Complementarities

The TWFE model is nested within the Tukey model as the special case ffy = 0. Hence, the asymp-
totic distribution of the RBL estimator BL,z can be used to test the null hypothesis Hy : fy = 0.
Rejecting Hy not only rejects the TWFE specification, but also rejects modularity of the interac-

tion function f, since any modular function can be written in the additive form assumed by the
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TWFE model (see Appendix A). To the best of my knowledge, no formal test of modularity has
previously been available in the BI framework, even though empirical discussions often revolve
around whether complementarities are present.

Testing Hy : By = 0 is the central focus of Tukey (1949), although no estimator for f is
proposed there. Relying on restrictive assumptions (homoskedastic normally distributed errors
nij and complete matching network Gyj), Tukey’s procedure first estimates the additive effects &
and g under the null through two-way fixed effects regression, and then test whether including
the interaction term «;1); significantly improves model fit, for example through regression-based
tests or changes in R?.

Similar heuristic approaches have been adopted in the TWEFE literature (e.g., Card et al. (2013);
Fenizia (2022)), but the sparsity of the matching network G;; makes consistent estimation of & and
p infeasible, so that any procedure based on regression residuals seem to be justifiable only under
strong assumptions on the error terms and the matching network. By contrast, the estimator f

remains consistent even under heteroskedasticity and in sparse matching structures.

Test Statistic. Consider the t-statistic

1vL A
LZ[ 1A1F7I[Z

Li=F—+—""" L A
A szlAszz Z[:l Alt’mz
TL,Z — &, L = 5
u 4
Z{ 1A1f7tg 2
1 Ste1 Doy, o Al,t’,r[fz S Aze,mz)
Zf lAZF”[Z ?

and define the test ¢; , with size y that rejects the null according to

¢r..(Troy) =1 {|fL,z| 2 CY/Z}’

where ¢/, is the y/2 quantile of the standard normal distribution. The asymptotic validity and
consistency of this test follow directly from the asymptotic normality result in Theorem 6, as

summarized in the following corollary.

Corollary 1. (Test for Modularity) Under Assumptions 5 and 6, asI — oo and ] — oo, if the inter-
action function f is modular, and hence the null hypothesis Hy : fy = 0 is true, the test ¢; (Ty...y)
is asymptotically valid:

I}LII;IOE[Q{)L,z(fL,z, Y)] =Y
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Under the Tukey model, when y # 0 and hence the interaction function is not modular, the test is

consistent:

LIEI;IOE[(}SL’Z(TL’Z’ Y)] =1

The test ¢, controls asymptotic size for any modular function, but Theorem 6 guarantees
its consistency only under correct specification of the Tukey model. In particular, a non-modular
function f can admit a representation with f, = 0, in which case the test has no power. Thus,
¢1.. tests a necessary but not sufficient condition for modularity. The situation is analogous to
testing independence between two variables using the correlation coefficient: while a nonzero
correlation implies dependence, a correlation of zero does not rule out dependence. In practical
terms, rejection of the null provides strong evidence against modularity, but failure to reject

should be interpreted with caution, as it does not imply that the interaction function is modular.

4.3 Productivities @ and g

Theorem 2 shows that, once f is known, connectedness of the matching graph guarantees iden-
tification of @ and . Two cases arise. When f, = 0, the model reduces to the standard TWFE
specification, and existing estimators can be applied. I briefly review the available results and
highlight how they rely on strong conditions that are rarely satisfied in labor market data. When
Bo # 0,1 propose a method that uses the consistent estimator ,BAL,, as input for estimating the pro-
ductivity parameters. A full analysis of its properties is left for future work. As with the TWFE
model, this approach ultimately requires denser graphs than are typically observed in applica-

tions, reflecting a shared limitation between the two cases.

4.3.1 TWFE model: 5, =0

When f) = 0, the Tukey model reduces to:
Yij = o+ P +1ij,
and the productivity components can be estimated using the TWFE estimator:
(@™, = (o) Cy,,

where the design matrix C is defined as in Definition 8.
Jochmans and Weidner (2019) study the asymptotic properties of the TWFE estimator. For in-

ference on a single productivity value, they derive its asymptotic distribution under the condition
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that the degree of the corresponding node diverges. More generally, inference on functionals of
a and  requires that the degrees of many nodes grow. As the authors emphasize, this setting
is far from typical labor market applications, where node degrees usually remain bounded: the
number of workers per firm or firms per worker does not increase proportionally with I and J.

Kline et al. (2020) also study inference for functionals of the productivities, focusing on quadratic
forms such as variances and covariances. Their asymptotic setting requires the matching network
Gyj to grow in a uniformly connected manner, without fragmenting into weakly linked subgraphs.
As their Table IV shows, however, this condition is rarely satisfied in labor market data, where
matching networks often exhibit considerable fragmentation.

These results highlight that in most labor market applications, and indeed in other two-sided
settings as well, the network is too sparse to justify asymptotic arguments for productivity es-
timation. This is not surprising: information on individual productivity depends only on the
relatively few edges involving that node, unlike global parameters such as f, which influence all

observed matches.

4.3.2 Case with complementarities: §, # 0

The estimator ,BAL,,[ can be used to construct least-squares estimators for & and ¢ when S, # 0.
I outline a simple procedure for doing so, which turns out to involve the same computational
problem as estimating interactive fixed effects.

Starting from the Tukey model in Equation (4.2), multiply both sides by f, and add 1:
1+ foyij = (1 + Poai) (1 + Poip;) + Ponij.
Now substitute f, with its consistent estimator ﬁAL,,, and define:
V= 1+Prayiy, o =1+Praas, ¥ =1+Prayy 0= Prani.

From these transformed variables, estimates for the original productivity terms can be recovered

from estimates of &’ and ¢’. Since
/ ’. 17 ’
Yij = ai% + Nijs
a natural approach to estimate &’ and ¢’ is to solve the least-squares problem:

ar 4 . 2
(&,¢) € arg min Z (v —aiyi)” st llg/ll=1.
" (i.j)eoy

This is the interactive fixed-effects problem, and can be solved via alternating least squares; see

35



Appendix F for implementation details.

A full analysis of the statistical properties of the productivity estimators derived from (&', )
lies beyond the scope of this paper and is left for future research. For this reason, in the next
section, when I illustrate how the Tukey model can be applied in practice, the focus will be on
Bo, the new parameter introduced by the Tukey specification, for which I developed an estimator

with formally studied asymptotic properties.

5 Empirical Illustration

In this section, I revisit the application in Limodio (2021)" to illustrate how to estimate the in-
teraction parameter in the Tukey model and how the resulting estimates can be used to draw
additional insights about the two-sided interaction.

Limodio (2021) studies the interaction between managers and tasks in the public sector, focus-
ing on the allocation of World Bank bureaucrats (hereafter, managers) to development projects in
low- and middle-income countries. Each manager is responsible for designing, supervising, and
overseeing project implementation. Project success is measured using ratings from the World
Bank’s Independent Evaluation Group, which assess the extent to which key objectives were
achieved. In the original analysis, project success is modeled as a function of a manager-specific
ability a; and a country-specific characteristic ¢;, using the TWFE model. An administrative
dataset records manager-country assignments over time, along with project-level characteristics
and evaluations, making it possible to construct the matching network and observe the outcome
corresponding to each edge.

The combination of assignment data and standardized performance evaluations provides an
ideal setting to study the structure and consequences of bureaucrat-task matching in an inter-
national organization. The main result in Limodio (2021) is the presence of negative sorting:
high-performing managers are disproportionately allocated to low-performing countries. Possi-
ble explanations include the Bank’s strategic objective of assigning stronger managers to weaker
countries, internal career incentives and promotion dynamics, the demand for specialized skills in
more difficult environments, and reallocations following adverse shocks such as natural disasters.

For this illustration, I focus on a version of the model without controls. This differs from the
main specification in Limodio (2021), which includes year and sector fixed effects in the two-way
fixed effects regression. The discussion here should therefore be viewed purely as an application
of the methods developed in this paper, not as a critique of or challenge to their findings. Those
results rely on additional assumptions that are not addressed in the following analysis.

The data contain 3,385 projects, corresponding to 1,876 distinct manager-country pairs. When

1The data used for this illustration exercise are publicly available on the author’s website.
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the same match y;; is observed multiple times, I use the average outcome. The resulting match-
ing network consists of 697 manager nodes, 127 country nodes, and 1,876 edges. Within this
graph, there are 228 edge-distinct four-cycles, involving 369 managers and 114 countries. Thus,
the information effectively used to estimate the Tukey interaction parameter comes from approx-
imately half of the edges and managers, and from about 90% of the countries.

I consider the RBL estimator [)A’L,Z, which assigns labels in each cycle using auxiliary informa-
tion on managers and countries. This requires instruments, observable characteristics of man-
agers and countries satisfying Assumption 6. I use the average project size as the instrument for
managers and the Public Infrastructure Management Index (PIMI) as the instrument for countries.
Limodio (2021) documents that project size, measured by the average loan amount overseen, is
predictive of managerial ability: more capable managers tend to supervise larger loans. Similarly,
the PIMI developed by Dabla-Norris et al. (2012) is predictive of institutional productivity, with
higher-performing countries scoring higher on this index. Assumptions 6.2 and 6.3 hold provided
that the rankings induced by these instruments are not systematically opposed within cycles and
not systematically misaligned when productivity gaps are large. Since such violations would
require counterintuitive patterns, the assumptions appear plausible in practice. Using average
loan size for managers and the PIMI for countries, therefore, offers a feasible way to implement
Assumption 5.4.

Figure 6 reports the value of the RBL estimator, together with the corresponding confidence
interval for nominal coverage of 0.9. The estimate is negative, indicating negative complemen-
tarities between managers and countries: the relative contribution of a high-ability manager,
compared to a lower-ability one, is greater when working in a lower-productivity country. The
magnitude of the estimate (0.196) can be interpreted as the ratio of the multiplicative to the addi-
tive component. This suggests that, while smaller in importance than additive effects, the multi-

plicative part of the interaction function still plays a meaningful role.

Rank—-Based | —e— :
Labeling I
|
Random | 1y
Labeling ] 1 o
1
-0.8 -0.6 -0.4 -0.2 0.0

Figure 6: Estimates for the Tukey model. The confidence interval is constructed to correctly cover S, with
probability 0.9.

The confidence interval (—0.293,-0.099), centered around BL,Z, does not include zero. The
p-value for the null fy = 0 equals 0.001, providing strong evidence against the absence of com-

plementarities in this interaction.
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To underscore the importance of label choice, the figure also reports estimates obtained under
random labeling. These are presented only to illustrate how reliance on uninformed labels affects
the estimator and should not be interpreted as informative about the underlying interaction.
As expected, random labeling inflates the variance, producing confidence intervals nearly four
times wider than those based on rank-based labeling. In this case, the p-value of 0.126 would fail
to reject the null of no complementarities, highlighting how proper labeling is crucial for test
power, a theme further explored in the Monte Carlo simulations in the next section.

Figure 6 shows the estimate for a single random labeling, but many such estimates can be
computed. Figure 7 plots the distributions of ﬁAL,,, and of [i, (the estimator of yjc,, the scaling
factor in the asymptotic distribution) across 50,000 random labels assignments, with the values

obtained under rank-based labeling highlighted in red.
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Figure 7: Empirical distribution of ,[§L,,I and fi,;. For the distribution of ,3L,”, to make the histogram infor-
mative, I excluded 2.8% of observations out of (—1.5,1). For reference, the minimum and the maximum
values I obtained are -413.589 and 1543.647.

The distribution of ﬁL,ﬂ shows that most labelings yield negative estimates, though with some
variation in magnitude. The distribution of /i, symmetric around zero, indicates that the instru-
ments are informative about the underlying characteristics: the rank-based labeling produces an
estimate of /i, larger in absolute value than about 80% of random labelings. At the same time, in
20% of cases random labeling delivers even larger values, reflecting that, as expected, the instru-
ments capture only part of the variation in latent rankings.

Figures 6 and 7 thus highlight the importance of selecting labels correctly. The analogy with
instrumental variables is direct: valid instruments must be informative about the latent charac-

teristics, not mere noise, in order to deliver consistent and precise estimates.
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The negative estimate, statistically different from zero, implies that the skills of high-ability
managers matter most in low-productivity countries, where managerial capacity has a greater
marginal impact. This explanation was already suggested by Limodio (2021), but could not be
formally assessed under the modularity restriction of the TWFE model. In this view, assigning
high-performing bureaucrats to low-performing countries is efficient and raises average project
success.

Overall, the empirical illustration shows that the Tukey model is straightforward to imple-
ment and provides insights into the structure of interactions that the TWFE model, by construc-
tion, rules out. The exercise also underscores the practical relevance of Assumption 5.4: only
when instruments induce informative labelings do the resulting estimates convey reliable evi-
dence about complementarities. In the next section, I turn to Monte Carlo simulations to evaluate
how these insights carry over to controlled settings and to study the finite-sample behavior of

the estimator.

6 Monte Carlo Simulations

In this section, I investigate the finite-sample behavior of the estimator ,BAL,Z. Because estimation
of By comes entirely from the cycles, I abstract from the rest of the network: I fix a number of
cycles L and simulate outcomes only on those cycles. This design lets me isolate how performance
depends on the effective sample size (the number of cycles), the relevance of the instruments, and
the relative magnitude of productivity variation to noise.

Since in simulations the true values of @ and g are known, I can examine the role of the
instruments by directly controlling the labeling within each cycle. Concretely, I set the values
of r;, and T[Zz’ which is equivalent to choosing instruments that induce those labelings. This
approach cleanly maps instrument relevance into the labelings that matter for ﬁL,Z.

The simulation design proceeds in two steps.

Step 1. Generation of productivities. For each of the L cycles, the vector of productivities of
two workers and two firms is drawn from a multivariate normal distribution with mean vector y

and covariance matrix X:

1 0 05 05
0 1 05 05
05 05 1 0]
05 05 0 1

p=(1,313), ==

Labels are then assigned by fixing JTZZ = 1 and setting 7;, equal to 1 with probability p > 0.5
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and to —1 with probability 1— p. This corresponds to using different instruments for «: the larger
the value of p, the stronger the instrument. Equivalently, the same exercise could be conducted
using instruments for ¢ or for both sides simultaneously.

Step 2. Generation of outcomes. In each Monte Carlo replication, the four error terms for
every cycle are drawn independently from a normal distribution with mean zero and variance
O'izj. Combined with f, these errors generate the 4L outcomes, which form the simulated data
observed in that replication.

I explore the finite-sample properties of the estimator by varying the number of cycles L, the

error variance o;j, and the relevance of the instrument p:
L € {100,500, 1000,5000}, o;; € {0.5,1,2}, p € {1,0.85,0.65,0.5}.

These choices allow me to examine the role of the assumptions in Theorems 5 and 6, which
require L to be large, o;; to remain bounded, and p # 0.5. The case p = 0.5 corresponds to
non-informative labels, where ¢, = 2p — 1 = 0 and Assumption 5.4 fails.

For each parameter combination, Step 1 is implemented once, while Step 2 is repeated 10,000
times. Fixing productivities, their labels, and their allocation in cycles across replications mimics
the identification and inference analysis, where «, g, Gy, z%, and Z¥ are treated as deterministic.

Table 1 reports the mean squared errors of ﬁAL,,, as an estimator of f, across simulations.
Table 2 presents the average widths of the corresponding 90% confidence intervals, while Table 3
displays the rejection rates of the test for absence of complementarities under the null hypothesis

Hy : By = 0, for By € {0, 1} and nominal significance level y = 0.1.

Mean squared errors
p
0ij L 1 0.85 0.65 0.5
0.5 100 0.0004 0.001 0.068 104.760
0.5 500 0.0001 0.0003 0.001 209.599
0.5 1000 0.0001 0.0001 0.001 202.407

0.5 5000 0 0 0.0001 16.723
1 100 0.002  0.470 9.173 225.307
1 500 0.0005 0.001  30.133  15.068
1 1000 0.0002 0.0005 0.005 371.678
1 5000 0 0.0001 0.0005 390.308
2 100 0.348 53.365 586.414 371.702
2 500 0.003 0.018 229.784 101.623
2 1000 0.001  0.002 5.009 165.683
2 5000 0.0002 0.0003 0.003 633.327

Table 1: Mean squared error across different values of 0;;, L, and p under f = 0.
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Average confidence interval width

p
Oij L 1 0.85 0.65 0.5
0.5 100 0.070 0.110 0.890  2330.210
0.5 500 0.030 0.060 0.100  8171.620
0.5 1000 0.020 0.030 0.080  5022.450
0.5 5000 0.010 0.020 0.040 342.600

1 100 0.150 2.740 84.360  9941.750
1 500 0.070 0.110 553.890 203.280
1 1000 0.050 0.080 0.200  5879.220
1 5000 0.020 0.030 0.080 16986.770
2 100 2.980 730.570 15752.510  7345.480
2
2
2

500 0.160 0.310  2214.970  2782.270
1000 0.100 0.150 34.490  3163.600
5000 0.040 0.060 0.160 11696.520

Table 2: Average width of confidence intervals across different values of o; j» L, and p under f = 0, for a
nominal coverage of 0.9.

When p > 0.5, and hence Assumption 5.4 holds, the mean squared error, the width of the
confidence intervals, and the discrepancy between nominal and empirical size all increase with
the error variance and decrease with the sample size. By contrast, the power of the test rises with
sample size and falls as noise grows. These patterns are consistent with theoretical predictions.

The more interesting patterns concern the role of p, which captures the relevance of the
instrument. When Assumption 5.4 is violated (p = 0.5), the estimator becomes inconsistent and
the asymptotic distribution no longer applies. In this case, the mean squared error does not
shrink with sample size, the test fails to control size under the null, and it is inconsistent against
the alternative, regardless of sample size or error variance.

When the assumption holds but ¢, is small (that is, when p > 0.5 but close to 0.5), finite-
sample performance deteriorates, especially when L is small and o;; is large. The simulations
confirm that a small ¢, inflates the estimator’s variance, producing large mean squared errors
and wide confidence intervals. This effect is most pronounced when p is small relative to L. In
such cases, the test for absence of complementarities continues to control size reasonably well,
but its power drops sharply, as the inflated variance reduces the ability to reject the null when
it is false. This mirrors the empirical illustration, where the null hypothesis fy = 0 was rejected
under rank-based labeling but not under random labeling.

Overall, the simulations reinforce the theoretical results and highlight the central role of la-
beling within cycles: appropriate label selection is crucial not only for estimator precision, but

also for ensuring that the test for the absence of complementarities retains meaningful power.

41



Rejection rate under Hy Rejection rate under H;

100 0.116 0.133 0.189 0.192 0.173 0.086 0.014 0.005
500 0.094 0.102 0.143 0.188 0.695 0.482 0.078 0.002
1000 0.088 0.086 0.116 0.168 0.930 0.681 0.179 0.002
5000 0.093 0.097 0.092 0.187 1 1 0.608 0.024

p p

Oij L 1 085 0.65 0.5 1 085 0.65 0.5
0.5 100 0.098 0.077 0.084 0.046 0.983 0.895 0.020 0
0.5 500 0.102 0.097 0.080 0.028 1 1 0.909 0
0.5 1000 0.102 0.098 0.076 0.040 1 1 0.995 0
0.5 5000 0.105 0.100 0.102 0.069 1 1 1 0
1 100 0.093 0.109 0.113 0.112 0.572 0.409 0.071 0
1 500 0.091 0.085 0.118 0.139 0.997 0.916 0.267 0
1 1000 0.094 0.090 0.093 0.132 1 0.997 0.650 0
1 5000 0.099 0.100 0.089 0.122 1 1 0.994 0
2

2

2

2

Table 3: Rejection rates across different values of o;;, L, and p for the null hypothesis Hy : fy = 0,
considering tests with nominal level y = 0.9. In the right part of the table, simulations consider a true

Bo = 1.

7 Conclusion

This paper introduced the Bipartite Interaction (BI) framework for modeling two-sided interac-
tions. Within this framework, I proposed notions of identification and large-sample, and studied
three models defined by different restrictions on the interaction function, deriving conditions
for their identification. The analysis highlighted a fundamental trade-off between flexibility in
the interaction function and the density of the matching network: richer interaction structures
require stronger graph conditions to achieve point identification.

Among the models, the Tukey specification emerged as a particularly useful case. By summa-
rizing complementarities with a single parameter, it extends the TWFE model in a parsimonious
yet interpretable way, and for identification it requires only mild additional conditions beyond
those of the TWFE model. I developed a novel cycle-based estimator for its interaction param-
eter, which avoids estimating latent productivities, is consistent under bounded-degree graphs,
and is asymptotically normal. Its asymptotic distribution also provides the basis for a formal
test of the absence of complementarities. An empirical illustration showed that the Tukey model
can be implemented in settings where the TWFE model is standard, delivering richer insights
into the interaction process that would remain hidden under additively separable models. More
broadly, the results demonstrate that complementarities matter in practice and can be studied
with feasible methods.

Two directions for future research remain open. First, while the analysis here focused on
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point identification, extending the BI framework to partial identification would be valuable. For
the BLM and seriation models, even when point identification fails, the data may still deliver infor-
mative bounds. Characterizing identified sets and developing computational methods to recover
them could lead to more credible conclusions without strong parametric assumptions. Second,
while in this paper the main focus was on estimation of f; in the Tukey model, researchers are
often interested also in estimating the productivity parameters & and g. I outlined some estima-
tors, but a full analysis of their properties is needed to assess when they yield reliable measures
of worker and firm productivities. The BI framework, by clarifying the distinct roles of the in-
teraction function and the matching network, provides a natural foundation for these further

investigations.
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A Model Characterization via Shape Restrictions

This Appendix shows how the TWFE, Tukey, and BLM models introduced in Section 2 can be
obtained from shape restrictions imposed directly on the interaction function f. In particular, I
demonstrate that imposing certain shape restrictions leads to representations that are observa-
tionally equivalent to each of these three models: once the restrictions are in place, f can, up to a
relabeling, be expressed in the form of the TWFE, Tukey, or BLM specification. For the seriation
model, the connection with monotonicity of f was already made explicit in its definition, and is
therefore not revisited here.

These equivalence results clarify the structural assumptions implicitly embedded in the mod-
els, which are often interpreted only as reduced-form specifications. The remainder of this Ap-
pendix is organized as follows. Section A.1 shows how modularity leads to the TWFE model;
Section A.2 establishes the connection between bilinearity and the Tukey model; and Section A.3

links a diagonal bilinear structure to the BLM model.

A.1 Modularity and TWFE model

Recall the definition of modularity (see Topkis (1998) for an extensive discussion).

Definition 6. (Supermodularity, Submodularity, Modularity) A function f : RXR — R is super-
modular (submodular) if, for any quadruple (i, ', j, j') such that a; > ay and ; > Yy,

flai¥y) = flai ) 2 () f(aw, y) = faw, gy).
A function f is modular if it is both supermodular and submodular.

If f is twice continuously differentiable, supermodularity (submodularity) is equivalent to
*f/da 3y > 0 (< 0), and modularity to 8*f/da dy = 0 everywhere.

The next proposition formalizes the observational equivalence between a modular f and the
TWFE model specification.

Proposition 4. (Modularity and TWEFE model) Any model (f, a,y,Gyy) with f : RXR — R

modular is observationally equivalent to the TWFE model.

Proof. For functions defined on product spaces, modularity is equivalent to additive separability.
Thus, any modular f can be written as f(a;, ;) = go(;) +9gy (¢;) for some functions g, : A — R
andgy : ¥ — R. Let o = go(a;) and ] = gy (¢;). Then, it holds that f (ai, ;) = ga (i) +gy () =
a; +}, and hence (f, &, g, Gyj) and the TWFE model are observationally equivalent. ]
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A.2 Bilinearity and Tukey model
Recall the definition of bilinearity (Lang, 1987).

Definition 7. (Bilinearity) A function f: U X V. — R is bilinear if, for each fixedv € V, the map

u — f(u,v) is linear in u, and for each fixedu € U, the map v — f(u,v) is linear in v.

Many panel data methods rely on bilinear interactions between latent fixed effects, whether
scalar or vector. Examples include two-way and group fixed effects, difference-in-differences,
synthetic control, factor models, low-rank approximations, and nuclear-norm regularization (see
Arkhangelsky and Imbens (2024) for a review). Bilinear structures also arise in strategic settings:
in the classic two-player, two-action simultaneous game with risk-neutral agents (Nash Jr, 1950),
expected payoffs are bilinear in the players’ mixed strategies.

In the Bipartite Interaction model, to allow for an intercept while maintaining one scalar
productivity per agent, define the augmented vectors o = (a;,1)" and 7 = (¢;,1)". Say that
f(a, ) admits a bilinear representation if there exists a bilinear function f° such that f(a, ) =
(e, 9).

With an additional assumption on the behavior of f at the origin, the following proposition

shows that admitting a bilinear representation is observationally equivalent to the Tukey model.
Proposition 5. (Bilinear Representation and Tukey model) Any model (f, e, 9, Grj) in which f
admits a bilinear representation with a; = (a;,1)" and y; = (;,1)" and satisfies

fle, ) =0 & a=0AY =0,

is observationally equivalent to the Tukey model.

Proof. By Theorem 4.1 in Lang (1987), any bilinear function f, can be written

v oU\ v\’ v _ bOO bOl
ﬁ](a,w)_(a)Blp’ B_(bw bll).

Hence,

fla,¥) = fo(a®,¥°) = (a;, 1)B(¢, 1)" = booaty + borcx + bioy) + byy.

Since f(0,0) = 0, by; = 0. Furthermore, since f(a,1¥) = 0 only when both « and ¢ are zero,
bo1 # 0 and by # 0. Set

bOO

o =bpa, Y =byy, Po= bobe
1Y1
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and note that f(a, ) = bpra + bioy + bpoay = &’ + Y + Poa’yy’, and hence (f, e, 9, G;) and the

Tukey model are observationally equivalent. O

A.3 Bilinearity and BLM model

Suppose now that each firm is characterized by the productivity vector y/; = (bj,aj). Recall that
a diagonal bilinear form is a bilinear form whose matrix representation is diagonal. Imposing that

f admits a diagonal bilinear representation is observationally equivalent to the BLM model.

Proposition 6. (Bilinear Representation and BLM model) Any model (f, a,y, Giy) in which f
admits a diagonal bilinear representation with o} = (a;, 1)’ and 1//]” = (bj,a;j)" is observationally

equivalent to the BLM model.

Proof. By Theorem 4.1 in Lang (1987), any bilinear function f, can be written

bOO bOl
blO bll

fo@®,y*) = (&)’ BY®, B= (
Since B diagonal, by; = by = 0, and hence
fla,¥) = fo(a°,¥°) = (a1, 1)B(bj, aj)" = booab + borata + biob + by1a = beoarb + by;a.
Set
o =bya, a =bya b =b
and note that f(a, ) = byoab + by1a = a’b’ + @', and hence (f, &, 3, Gy7) and the BLM model are

observationally equivalent. ]

B TWEE as Approximation of Tukey

The TWFE model is often interpreted as an approximation, analogous to using the best linear
projection (the linear function of a variable X that minimizes mean squared error when approx-
imating another variable Y) to summarize the relationship between random variables X and Y.
In this Appendix, I investigate how such an approximation behaves when the true worker-firm

interaction follows the Tukey model.
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Define

ni:ZDij, mj:ZDij: n=zn1,
i i

J
where n is the total number of matches, n; is the degree of worker i, and m; is the degree of firm

j- Using this notation, I introduce the two-way fixed effects (TWFE) projections.

Definition 8. (TWFE Projection) Under Assumption 2 and the normalization oy = 0, the TWFE
projections (a™f¢, p"f¢) are defined by

(atwfe’ q}twfe) — (C/C)_IC’O(),

whereC € R™¥U*=1) s the incidence (design) matrix linking the free worker productivities (a, . . ., &)

and all firm productivities (yn, ..., {;) to the observed matches.

Intuitively, (atwf € tp”"f ¢) are the coeflicients from a TWFE fit in the noiseless model. The
expression in Definition 8 is the ordinary least squares solution, with C determined entirely by
the structure of the matching network G;;. Each row of C contains one nonzero entry in the
worker block and one in the firm block, encoding the worker-firm pair observed in that match.

The matrix C'C has the block form

diag(ny, ..., ny) D
C'C=
DT diag(my, ..., my)
where D is the incidence block of the adjacency matrix of G;. This is the signless Laplacian
of Gyj, the sum of its degree matrix and adjacency matrix, which captures the full connectivity
structure of the graph.

Under the TWFE model, the TWFE projections (a!*f¢,""f¢) coincide with the true pro-
ductivities (@, ). Under alternative interaction functions, however, the presence of C’C in the
projection formula implies that the bias depends on the entire structure of Gy;. In the case of the
Tukey model, this dependence admits a closed-form characterization.

Define the average partner productivities
- 1 _ 1
¢i=—ZDijo, aj=—ZDij0!i,
n; 7 m j -

where 1/; is the average firm productivity for worker i and &; is the average worker productivity
for firm j.

The next proposition provides the expressions for (a'*/¢,¢"¢) under the Tukey model,
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making it possible to examine when the TWFE projection delivers a good approximation to the

true interaction.

Proposition 7. (Misspecified TWFE) Under the Tukey model, the normalization a; = 0, and As-
sumption 2, the projections satisfy, fori > 1 and all j:

twfe
a; " =ai+ fo

I J
Z Ai,i/ ni/ai/lpi/ + Z Ai, I-1+j m]/lpj'&]' R
i’=2 j=1

v =+ o

I J
Z Ap-14j v nvary + Z A1y -1y mpyypag |,
=2 =1

where A, denotes the (u,v) entry of the inverse of the signless Laplacian of Gyj.

Proof. To derive these expressions, rewrite the problem in matrix form and apply the ordinary
least squares formula. Let A € RY*I and B € RY>*/ denote the worker and firm indicator matrices,
respectively. Each entry A(;;) ; and B(;j) j equals 1 if the match (i, j) involves worker i or firm j,
and zero otherwise. Let Y € R/*! stack the 6, j values, and let S € R™ be the selection matrix
extracting observed matches, so that p = SY.

To impose a; = 0, drop the first column of A and define C = [SA_; SB] € R™>U+]-1) \where

wfe = [,y Ly Y Then

A_; is A without its first column. Let ¢
c™fe = (C'C)TIC'SY = (C'0)'C8o.

Define a = SAa, p = SBy, and h := a® p, where © denotes element-wise multiplication. The

systematic part of the outcome satisfies
{0ij}i.jyeo,, = SY = Cc + Poh,
and thus the projection becomes
twfe _ 7 N\—1,v
c =c+ fo(C'C)""C'h,

where B,(C’C)~1C’h is the bias term.

The matrix C’C is the signless Laplacian. To compute C’h, observe that each row k of C" has
a 1 in the two positions corresponding to the nodes in match k, and zeros elsewhere. Therefore,
C’h is a vector whose first I — 1 entries are niailﬁi fori = 2,...,I, and whose next J entries are

m;y;a; for j =1,..., J. Substituting into the bias formula yields the stated result. ]

The matrix A, the inverse of the signless Laplacian, can be viewed as a “connectivity influence
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matrix”: the entry A, , measures how a perturbation in node v’s outcome propagates through the
graph to node u. Larger values of A,, indicate that u and v are more tightly linked, via short
paths, multiple routes, or connections through high-degree nodes, so omitted interaction terms
from node v spill over more strongly into node u’s TWFE projection.

The bias in Proposition 7 is proportional to |fy|, and vanishes when fy = 0. The expressions
nyay Yy and mjya; correspond exactly to the interaction components that are omitted when
TWEFE is imposed. The weights A,,,, given by the entries of the inverse signless Laplacian, deter-
mine how the structure of Gj; channels these omitted terms into each node’s projection. Because
A depends on the global topology of the graph, the bias for any given worker or firm is shaped
by the structure of the entire network. Closed-form expressions for A are available for certain

graph families (Hessert and Mallik, 2021), but no general formula exists.

B.1 Bias Propagation in Sorting Measure

Crucially, the bias term at each node depend not only on f, and the corresponding productivity,

but also on the full pattern of observed matches. Two workers i and i’ with identical productiv-

e twfe .
f¢ and a, f¢. In some cases, the ordering may

twfe twfe c e
; f <a, f . This is in contrast

ities, @; = a7, may have different projections, al.t v
even reverse: for example, it is possible to have a; > a; but «
with the balanced panel case, where all worker-firm pairs are observed and projections preserve
the productivity rankings.

The bias expressions show that the projections embed the sorting pattern in the matching
network. Hence, relying on a'™/¢ and ¢""/¢ to measure sorting can be misleading. A standard

f

. . twfe twfe
approach is to compute the correlation between ¢; " and ; J¢ across observed matches: one

¢ and another with 1//;Wf ¢ for each observed pair (i, j), and

constructs two vectors, one with ait w
then computes their correlation as a summary statistic of sorting. A positive correlation sug-
gests sorting of high-productivity workers with high-productivity firms; a near-zero or negative
correlation implies weak or negative sorting.

Proposition 7 can be used directly to construct cases in which the projections fail to capture
the true sorting pattern. In the example below, I construct a setting with positive sorting, meaning
that true productivities are positively correlated across matches. Although the true correlation
is sizable (around 0.3), the correlation computed using TWFE projections is close to zero when
the interaction function is supermodular with f, = 3. This case is not contrived: the matching
network in Figure 8 is fairly typical, and simple theory predicts supermodularity being associ-
ated with positive sorting. Nonetheless, the TWFE approximation would incorrectly suggest the

absence of sorting.

Example 3. (Sorting Pattern) Consider the matching network with I = 3, ] = 3, and Ojj =
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{(i1, j1), (i1, j2), (i1, J3)s (i2, j2), (ia, J3), (i3, j3)}, as illustrated in Figure 8. Let the productivities be
ap = 4, oy = 5, andocg =2, and% = 10, 1702 =38, andl//3 =1.

-0.25 4

il .\\: jl
iy .\. J2

J3

-0.501

Figure 8: Left: the matching network in Example 3. Right: the correlation coefficient p between worker
and firm TWFE projections across matches as a function of f.

Using Proposition 7, compute the projections a'™f¢ and ¢'¥'¢, and let p be the correlation of
productivities across matches. Figure 8 shows how p varies with By: although the true correlation is
0.3 (and is correctly captured when By = 0), the correlation based on the projections can be close to
zero or even negative.

Consider the case By = 3, hence with a supermodular interaction function. The correlation based

on the TWFE projections is only 0.02, with the bias nearly offsetting the underlying sorting pattern.

Bias in the covariance also contaminates the variance decomposition, making its components
difficult to interpret. In addition, because the bias can reverse the true ranking of agents, any two-
stage procedure that relies on TWFE projections as outcome variables in subsequent regressions
becomes unreliable.

Example 3 hence demonstrates that approximating the Tukey model with the TWFE specifi-
cation, even in the noiseless case, produces parameters of limited informational value once com-
plementarities are non-negligible. This underscores the importance of methods that allow f to
feature complementarities. The Tukey model provides the minimal extension of TWFE required

to capture them, offering a simple yet flexible structure for analysis.

C Seed-and-Snowballs and Leave-one-out Connectivity

In this Appendix, I examine the relationship between the Seed-and-Snowballs connectivity prop-
erty introduced in Section 3.3 and the leave-one-out connectivity condition used by Kline et al.
(2020) to establish the validity of their variance estimator. The latter requires that the bipartite
graph remain connected after removing any single worker node together with its incident edges.

The precise relationship between these two conditions is stated in the following proposition.
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Proposition 8. (Seed-and-Snowballs vs. Leave-one-out Connectivity) If Gy satisfies Seed-and-

Snowballs connectivity, then it satisfies leave-one-out connectivity; the converse does not hold.

Proof. Seed-and-Snowballs = Leave-one-out. If |J| = 1 the conclusion is immediate, so assume

there are at least two firms. Run the Seed—and-Snowballs algorithm using a seed j, and record
the order in which firms enter the set Si ; by construction, each firm j; with k > 1 is connected

D and 1(2)

to the preceding firms through at least two distinct workers, say i,
Now, remove an arbitrary worker i* together with all 1n01dent edges. For every firm ji there

are two cases:
1. Ifi* ¢ {1(1) (2 )} Jjk keeps both links to the earlier firms.

2. If i* coincides with, say, i ( ) , the second link z( ) remains, so ji is still connected to the

subgraph generated by {jo, ..., jk-1}-

Proceeding inductively from k = 1 to k = |J| — 1 shows that every firm remains connected to
Jo after i* is deleted; hence, the whole graph stays connected. Because i* was arbitrary, Gy; is
leave-one-out connected.

Leave-one-out = Seed-and-Snowballs. Consider the graph in Figure 9. Deleting any single

worker breaks exactly two edges, but the remaining edges still form a path that contains every
node, so the graph is leave-one-out connected. However, starting for example from the seed j,, the
snowball algorithm proceeds jo — {i1, iz, is} — {jo, j1} — {i1, iz, s, i3}; remaining firms share at
most one of these workers, so no further firm can be added and the procedure stops. Because the

same failure occurs for any choice of the seed, Seed-and-Snowballs connectivity does not hold.

i1 Jo
7 1
is i3 i3 J2

ig J3

\

is

j2 . i4 j3

Figure 9: Two representation of the same bipartite graph satisfying leave-one-out connectivity and vio-
lating seed-and-snowball connectivity.
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D 4-Cycles in Erdés-Rényi Model

In this Appendix, I study the conditions under which the bipartite Erd6s-Rényi random graph
model generates, with high probability, a diverging number of length-4 cycles, thereby satisfying
Assumption 5.2. In the Bipartite Interaction model, the graph Gy is treated as fixed, so the number
of cycles is deterministic. The goal here is not to provide a model of network formation, but rather
to clarify the role of the “many cycles” assumption and how it relates to connectivity. While
similar insights arise under other random graph models, the Erdés-Rényi model is adopted as a
simple benchmark in which the entire network structure is governed by a single parameter.

In the bipartite Erd6s—Rényi graph Gyj(pry), each pair (i, j) € I X J is independently linked
with probability p;; € (0,1). The link probability p;; is constant across edges, but may vary with

network sizes I and J. Let C4(I, J) denote the (random) number of length-4 cycles in Gy;(pry),

L L
J J
that the numbers of agents on the two sides of the market grow at the same rate. The following

and consider a setting in which the ratio ;7 remains bounded (0 < ¢ < 7 <¢ < o0)asl, ] — oo, s0
proposition provides a sufficient condition for Gy;(p;;) to contain a diverging number of length-4

cycles.
Proposition 9. (Cycles in Erdés-Rényi Model) If Ip;; — oo, then Cy4(1, ]) LS

Proof. Let I, be the indicator that the quartet ¢ = (i, ', j, j’), with i,i’ € I and j, j* € ], forms a
cycle, and let £ denote the set of all potential quartets. The number of length-4 cycles C4(1, J) is
then given by

C(L)) =) I

tel

) () =

Since there are ( potential cycles, and each occurs with probability p?],

Bicur )] = U= e

Consider the variance of C4(I, J):

Var(Cy(1,J)) = Var (Z 1,

teLl

= Z Var(Z;) + Z Cov(Zy, Iy),

tel t+l

and since Z'l,z =1,

ZV&I(]}) = ZP?](l _P?]) = 1~ l)i(] - 1)P?](1 _P?])’
4 t
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which gives a term of order O(I 4p?1), where ] is replaced by I since both grow at the same rate.

For two distinct cycles, let k € {0, 1, 2} be the number of shared edges. If k = 0, the indicators
are independent, so the covariance is zero.

If k = 1, the two cycles share exactly one edge and involve six nodes. The number of such
pairs is therefore of order O(I°J*). Each covariance term Cov(Z, Z;/) is of order O(p;]), so the
total contribution from pairs that share one edge is of order O(I°’°p];) = O(I°p])).

If k = 2, the two cycles share exactly two edges and involve five nodes. The number of such
pairs is therefore of order O(I°). Each covariance term Cov(Z;, 1) is of order O( p;’]), so the total
contribution from pairs that share two edges is of order O(I°py)).

Since the variance is thus

Var(Cy(L, ])) = O(I*py;) + O(I°pj)) + O(Ppy)),

I can conclude that, when Ip;; — oo,

Var(C4(L, ])) —O( 1 )_) 0
E[C«(LND? ~ \Ipy ‘

Let € > 0 be arbitrary. By Chebyshev’s inequality,

o

and hence E[C_C44] L 1, which establishes

Cy
E[C4]

Var(Cy) 0
(E[CYE

-1

> €} =Pr{|Cy — E[C4]| = €E[C4]} <

CoL,]) D 0.

O

The threshold for p;; required by Assumption 5.2 can be compared to the threshold needed

for connectivity. For the network to be connected with high probability, it is necessary that

I
Py
log(I)

(see Section 8.2 of Blum et al. (2020)). Since log(I) — oo, this condition implies Ip;; — oo. In
the bipartite Erd6s—Rényi model, such a condition automatically guarantees that the number of
4-cycles diverges. The reverse, however, does not hold: C4(I, J) — oo even when Ip;; grows more
slowly than log(I). Hence, connectivity is a strictly stronger requirement than the existence of

many cycles. In particular, under the Erdés-Rényi benchmark, the graph conditions needed for
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identification in the TWFE model also imply consistency of /?L,,T for estimating f, in the Tukey

model.

E Outcome-Based Labeling

To assign labels within each cycle, I proposed an instrument-based procedure that relies on ob-
servable characteristics informative about worker and firm productivities. A natural question
is whether the outcomes themselves could be used for this purpose: since outcomes depend on
productivities, one might expect that, on average, the worker (or firm) with higher productivity
would also generate higher observed outcomes. While this intuition is appealing, it ignores the
exogeneity requirement: the labeling choice must not depend on the errors {7;;}, and hence the
outcomes can’t be used as instruments.

To see why this matters, consider the following outcome-based labeling rule, which assigns

labels according to the higher average outcome within a cycle.
Definition 9. (Outcome-Based Labeling) In each cycle ¢, the labels (iyz, . i, my) and (je, ,» Jy my)
are assigned so that

Yiewy yjeny, t Yieryltm,, > Yit my ety + LA .

yi[,ﬂg!yjl’,ﬂ[’y + yié;ﬂ(’,yj(’”f,y > yif,ﬂ[)yjé)ﬂé, yé”{’ j‘i’”t’,y'
This induces the signs

— o Vo
”Zy = Slgn(yizjf T Yirj, — Yigje — y,-;,j;) s Ty = Slgn(yim T Yirje = Yiej; — yi;j;) :
Because these signs depend directly on the realized errors 7;;, the resulting estimator ﬂAL,y is
no longer consistent. To illustrate, consider the case ) = 0, a;, — ap =1, and ¢, — lﬁj; = 1, with

Nirj, = Nirj. = 0. In this setting, the numerator and denominator of ﬁAL,y simplify to

L

1

T Z Migje = ’71[]() ”t’ y”{’y Z |’71!J¢’ Ulrh' Slgn(nlm + nlf][)
=1

h

==
M=

(2’71'{]'{ - 3’7if] 1) ﬂl’ yﬂ'{’y Z(zmm 3’71¢’Jg - 1) Slgn(nlm ’71(][) Slgn(”lm + r,ll’]()

~
Il

1

With independent error distributions, one can construct examples where f; , converges al-
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most surely to values different from zero, despite fy = 0. For instance:

5
3 = 1 2 = = N
_ > 1’ . > 7’ as. 5
M=) T = fry 275
b - Z’ I - 73
while with
3 1
1 =3 6 p=1 ,
_ > 4> o ’ 4’ as. _3
M=) L T =Y s = Py 2" -5
e - Za 4 p - Zs

These examples show that outcome-based labeling introduces asymptotic bias into B 1y» Which
can be either positive or negative depending on the error distribution. The problem arises because
the labeling uses information contaminated by 7;;, violating exogeneity. This underscores the

need for external instruments to guide label assignment.

F Alternating Least Squares in the Tukey model

Consider the problem:

N . 2
(&, ¢') € arg min Z (v —aiyi)” st llgll=1. (F.1)
" (i)€0y

Problem (F.1) is non-convex but admits a unique global optimum, up to the normalisation ||| =
1, as long as the matching network Gjj is connected.”
In practice, solve Problem (F.1) using alternating least squares. Starting from any g© # 0

with ||1p(°) l2 = 1, and iterating for t = 0,1,2,..., first set

D 9y
':Di‘=
gt = i=1...1 (F.2)

i - Z (%@)2’

v = j=1en), (E:3)

Z ((Z~(t+1))2 >

“The scale can be fixed in many equivalent ways; the L? constraint is convenient because it preserves closed-form
updates.
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and then rescale
c = ||¢(t+1)||2’ a(t+1) - ca(t+1), lp(t+1) - l/)(Hl)/C.

Equations (F.2)—(F.3) are ordinary least-squares fits with a single regressor: holding g fixed,
each q; is the slope from regressing {y;;};.p,;=1 on {{;};.p,;=1; with the updated « fixed, each y/;
is obtained symmetrically. Because (F.1) is bi-convex, the alternating least squares scheme mono-

tonically decreases the criterion and converges to the global minimizer when Gy; is connected.

G Lemmas

Lemma 7. (Regularity of Cycle-Based Error Terms) Under Assumptions 5.1 and 5.4, the derived er-
ror termsep, ¢, and €n, ¢z, SatisfyBlea, ¢, ] = E[€n,er,] = 0, Var(ea, ¢x,) = C1 > 0, Var(ep, ¢n,) =
Cy > 0, and E[leAI,g,mlzJ’y] < M; < oo, E[|6A2,g,m|2+5] < M, < oo for some § > 0 and finite con-
stants Cl, Cz, Ml, Mz.

Proof. Recall

_ a Y
ALty = ENLETTy TTp s

_ a Y
€Nty = €Nyt 7Ty Ty
with

EAve = Nigje = Miyje = Migjy T Miljiss

€nnt = Gipjelicjo + Osr jeMigje = Oirju iy — OsejiMisje + MigeMizjy = NitjoMiejy -

Since a;, ; and fy, and hence 0;;, are bounded, Assumption 5.1 and standard properties of
expectation, variance, and moments guarantee ex, ; and €, , to have mean zero, positive variance
and uniformly bounded 2 + § moments.

The term 7%

; 77.'2// is a random variable with support {—1,+1}, hence with uniformly bounded

moments.

By Assumption 5.4, €p, ¢, and €a, ¢, are the products of two independent random variables,
one with mean zero, positive variance and uniformly bounded 2 + § moments and the other with
uniformly bounded moments. This implies they are also mean zero, have positive variance and

bounded 2 + § moments. m|

Lemma 8. (Properties of Composite Error u; ,,) Under Assumption 5.1 and 5.4, the composite error

term uy 5, satisfies E{uy | = 0 and Var(u,,,) > C, > 0, for a finite constant C,. Its moments satisfy
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E[|u{;m|2+5] < M, < oo for some § > 0 and finite constant M,,. Furthermore, the variance Var(u; ,)

does not depend on the choice of the labeling.
Proof. Recall:

W _ a ¥ _ a Y
Ut = €yt + Po€nytm = (€nne + Po€n, o)y T, = upmy m,

with u; = ep, ¢ + Poen,e-

Since a;, Yj and fy, and hence 0;;, are bounded, Assumption 5.1 and standard properties of
expectation, variance, and moments guarantee €, , and €p, s, and hence u,, to have mean zero,
positive variance and uniformly bounded 2 + § moments.

The term 7/, is a random variable with support {—1,+1}, hence with uniformly bounded
moments.

By Assumption 5.4, u; -, is the product of two independent random variables, one with mean
zero, positive variance, and uniformly bounded 2 + § moments, and the other with uniformly
bounded moments. This implies they are also mean zero, have positive variance, and bounded
2 + § moments.

Finally, note that

Var(uyz,) = Var(unln!) = B[ (unfn! - Elugnin?])?] = B[ (uenlx!)?] = B[u?] = Var(uy),

and hence the variance Var(u,,,,) does not depend on the labelings ;' and . m]

H Proofs

H.1 Proof of Theorem 1

First, I show that the presence of a cycle is necessary for identifying fy. Suppose, by contradiction,
that Gy contains no cycles. If it is connected, it is a tree. If it is disconnected, it decomposes into
multiple tree components; focusing on any one component suffices, as the same argument applies
to each. A tree with M nodes has M — 1 edges, corresponding to M — 1 observed matches. The
model includes M node-specific parameters (one for each worker or firm) and the interaction
parameter S, for a total of M + 1 unknowns.

Consider the normalization «;, = 0, and fix an arbitrary value of ). In a tree, there is always

at least one edge connecting a known node to an unknown one. The equation on that edge,
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0ij = ai + Y+ Pa;;, becomes linear in the unknown parameter. For instance, if a; is known, then

91']‘—0(1‘
1+ﬁ0{i

al:l//j(1+ﬂ0.’i) - wj:

which is unique provided 1+ Ba; # 0. Removing this edge shrinks the tree, and one repeats until
all productivities are solved in terms of fy. Varying f, yields a continuum of distinct solutions &
and g, all consistent with the same observed systematic outcome. Since f, can be chosen freely
without contradiction (apart from that one value per edge), it is not identified when Gy is a forest.
Therefore, the existence of at least one cycle in Gj; is necessary for the identification of f.
Consider such a cycle, of length 2K with K > 2, and relabel the corresponding outcomes
iy 1> Oinji> - - - Oiejic» 0 as 0 9@ . 9K in the order encountered.
Define

iLJK

u; 2:1+ﬁ00(i, (5 ::1+ﬂ0¢j'
Then for each (i, j),
1+ fo0ij = 1+ Po(ai + ¢ + foaihj) = (1 + Poai) (1 + Potf;) = ujo;.

Hence, traversing the cycle gives

K K K K
1_[(1 + B0 %~ 1) 1_[ U vj, = l_[ Ui, 0j 1—[ (1+ ﬁOQ(Zk)
k=1 k=1 k=1 k=1
where ig.1 = 7.
Expand the products in elementary symmetric sums:
K K
n(l + B0y = Z seddgr
k=1 r=0
K K
[ ]+ 806 = > sevenp;
k=1 r=0
where
Sodd — Z 9(2k1—1) . Q(Zk,—m geven _ 9(2k1) . 9(2k,)
r > r ’
1<k <<k, <K 1<k <<k, <K

and the notation }}; 4, <..<k,<x denotes the sum over all (If) ways to choose r distinct indices
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1 < k; <--- <k, <K, each counted exactly once. Then, for each such tuple (ky, ..., k), the term

9%k~ ... 9(k=1) js the product of the corresponding r odd-indexed 6-values, and analogously
for G(Zkl) PP 9(2](7)'

Subtracting these expansions eliminates the constant term (r = 0), leaving

K
dd
Z SO Seven 6: O
r=1
Set
A, =809 _geven =12, K.
to obtain the degree-K polynomial

ABo+DNofi+ -+ A X =o0.

By construction, fjy = 0 is always a root, but does not recover the interaction parameter.

Factoring it out, one discards the trivial solution and focuses on the roots of

A1+A2ﬂ0+A3ﬁg+"'+AKﬂOK_1:

If this polynomial has an additional root fy = 0, that is a true admissible value for the interaction
parameter, differently from the purely algebraic root as above.

Uniqueness of the root is guaranteed only when K = 2. Any cycle with K > 2 does not allow
for point identification of fy, since it restricts its value to a set with K — 1 elements.

When K = 2, the derived formulas are

Ay = 0(1) + 0(3) - 0(2) - 9(4) = 0i1]1 + 0i2j2 - 01'1]2 - 91'2]1’
Ay = 9(1)9(3) - 9(2)9(4) = 9i1]'19i2j2 - 9i1j20i2j1’

and the polynomial becomes
(01,5, + 03,5, — 0,5, — Oi,5,) + Bo(04,1, 04,5, — 0, ,04,5,) = 0.

Bo is hence identified:

Oipj, + 045, — On,j, — Oiyy
0i1j1 eizjz - eiljzeizjl

po=-

63



where Assumption 1 guarantees the denominator being different from 0. In fact,
‘9i1j1 91’2]2 - Qiljzeizjl = ailllbjl + aiz¢j2 - ai2¢jl - ai1¢j2 = _(ail - 0(1'2)(1//]'1 - l//jz)'

H.2 Proof of Theorem 2

Sufficiency. Consider the model 0;; = a; + ¥/; + foa;);, with fy known. If fy = 0, this reduces to
the usual TWFE model. If f, # 0, rewrite

0ij = ai + Y + Poaiyj = 1+ Bobij = (1 + Poai) (1 + Poy))

and set

o =1+ Poai,  Yj=1+Poyy, 0 =1+ Poby,
which give

A
Qij—“i‘//j

where 0;; is identified. Clearly, & and ¢ are identified if o; and / are identified for all i and j.
0. "y

Since a;, = 0, 0{{0 =1+ foa; = 1. If workers i and i’ both match with firm j, then 5~ = Z}—ﬁ’, =
i’j i’

z—{, and the ratio is hence identified. Since Gj; is connected, for any worker i there exists a path

’

o — v — b = Jo— . = Jm — L

Applying the ratio argument at each firm along the path:

’ ’ ’ m /
o o %, % 1—[ 0 i
o o o o o4

k=1

which pins down «; uniquely since o] = 1.
0

ik-1Jk

’

0,
Once all @; are known, any observed edge gives 1,0]’ = “;{]’ uniquely determining each ;.
Necessity. If Gj is disconnected, it splits into at least two components. On each component,
one may independently rescale the local ;’s and /’s without changing the product ;/; on that

component. Thus, parameters across different components cannot be jointly identified.
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H.3 Proof of Theorem 3

First, note that identification in the BLM model requires two normalizations (a;, = bj, = 1). To
see why, consider parameter vectors (a, b, @) and (@', b’, @’) with
b iCo
’_ . r_ 2 - . _
a; = cia4 + ¢y, bj— , a,=aj o
for ¢, c; € R with ¢; # 0, and note that the BLM models with (a, b, &) and (a’,b’, @’) are obser-
vationally equivalent. To pin down the two degrees of freedom, two normalizations are needed.
Sufficiency. To prove sufficiency of Assumption 3, proceed along the Seed-and-Snowballs con-
struction. Let j; indicate the seed with the normalization a;, = b;, = 1.
Assume that, at some stage n > 0, all parameters of firms in Si are known. Hence, identify

parameters associated with workers in S and firms in Si . as follows:

(i) Firms — workers. For each worker i € S!, there exists a firm j € Si such that D;; = 1 and

bj # 0, and hence

(i) Workers — firms. For each firm j € Si . there exist two workers i,i’ € S! such that D;; =

Dyj=1and a; # ay, and hence

0y i—0;;
0, = a;+bja b = St
J J J J ap—a;
0i/j—0ij
Gi/j—aj+bja,-/ aj—9,~]~— P ;.

Because the snowball reaches (I, J) after finitely many steps, every «;, a;, b; is eventually
determined. Together with the two normalizations, this proves sufficiency.

Necessity. If Gy; is disconnected, it splits into at least two components. On each component,
one may independently rescale the local e;’s, a;’s, and b;’s without changing the 60;;’s on that
component. Thu,s parameters across different components cannot be jointly identified.

Suppose now that Gy; is connected but does not satisfy the Seed-and-Snowballs property. Fix

a seed jo and run the algorithm until it stalls at some finite step n. Consider

Slcy, SlcrL
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By construction, every firm in the outer set
JM =T\ S,

is linked to at most one worker already in S,Il. If such a link exists, call its worker the bridge of
the firm. Write I°" =T \ S! for the outer workers.
Choose an outer firm j, € J°" and let i) € S! be its bridge (it exists because Gj; is connected).
Redefine
A A A
bjA:)LbjA’ ajA:Gim—b‘a,‘A
and note that this preserves the value of ¢;,;, while altering (a;,, b}, ).
For every worker i € [°" that is connected to at least one firm whose (a, b) have already been
(re)defined, pick one such firm, denote it by j(i), and set
A
_ G — 9
=T
b
Jj(0)
A
J(@)
Whenever a still-unprocessed firm j € J°" is observed with two workers whose productivities

where as long as A is such that b” . # 0, a{l is well-defined, and 0;;(;) preserved.

are already determined and distinct, say i and i’, solve

1 0y i—0;;
Gij = a? + b?LOKl)L bj = a,{_agj
A A A o
L. = g/ Aoy’ A_p.. A
Orj = aj + bja; a; = 0;; — bja

where the right-hand sides depend smoothly on A via the a’s.

Iteratively repeat these two steps until all parameters have been recovered, and in case of
additional degree of freedom (because again at a certain point remain only firms with one worker
whose productivity has already been determined), just set the parameters at their true value. For
A = 1 the procedure returns the original parameters. For A # 1 it changes at least bj,, so the
parameter vector is different. Because the choice of A is arbitrary, the data are compatible with

infinitely many distinct (a’l, a’, bﬂ), establishing lack of identification.

66



H.4 Proof of Proposition 1

Let (fm, &, 9, Grj) be any representation with 6;; = fi,(a;,1;). Choose any strictly increasing

transformations g, and g, and define

i =ga(a), Vi=gp(). fulay) = fulga (@), g," ().

Then,

fn(eds¥}) = fin(ga (9ala), g, (9y (Y1) = fiu(atis ¥),

and hence (f, o, 9, Grj) and (f,,, @', 9’, Gj) are observationally equivalent.

H.5 Proof of Theorem 4

I prove the result for the ranking of «; the argument for @ is analogous.

Sufficiency. Fix any two workers i and i’. By Assumption 4 there exists a firm j such that
(i, j), (", j) € Opy. Because fy, is strictly increasing in each argument, the sign of 6;; — 6/ reveals
whether «; exceeds a; . Collecting these pairwise comparisons for all (i, i) constructs a complete,
transitive ranking of the workers, which is therefore identified.

Necessity. Suppose, to reach a contradiction, that Assumption 4 fails. Then there exist two
distinct workers i and i’ such that no firm j satisfies (i, j), (', j) € Oy;. Suppose o; > a;» and ay >
air, forany i” # i, i # i’. Also, suppose that for any pair of firms j and j” such that (i, j), (7', j') €
Oy, it holds that ¢; > ¢, and 6;; > 0y ;. Now consider the bivariate isotonic matrix where
workers i and i’ occupy the first two rows. Swapping the first and second rows, and filling in
the missing entries with appropriate values, preserves both row- and column-wise monotonicity.
This yields a second isotonic matrix that is observationally equivalent to the original but reverses
the relative order of i and i’. Therefore, the ranking of workers is not point-identified, implying

that Assumption 4 is necessary.
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H.6 Proof of Theorem 5

Rewrite the estimator as

Lo
% Z(=1 Al,{’,m
T
% Z(=1 Az,f,nf
1 vl 1 L
T 2up=1 Do + T 2= €A,
L1yl A 1yl
L Z{’:] 2,0,y + L Z[:] EAz,[,f[[
1wl 1 vl
_Bot X (@i, — i) (5, = %‘;)ﬂ?ﬂf + 7 D=1 €ALL,

L L
_% Zt’:l(ai( - aié)(lpjf - w]}f)”{?”f + % Zt’=1 €Ny t,mp

,BL,H =

Consider the two collections
{eAl;L;[JTt’ :1<¢<L} and {GAZ)L)[,,T[ 1< ¢ <L}

By Lemma 7, each entry in these triangular arrays has mean zero and uniformly bounded 2 + §

moments. Hence, by the Strong Law of Large Numbers for triangular arrays, conclude

L

1 <& 1

a.s. a.s.
T Z €Al 0 and — Z €Nty 0
L =1 L =1

as L — oo, a limit guaranteed by Assumption 5.2.
Applying the Continuous Mapping Theorem, and using the facts that py; # 0 by Assumption
5.3 and ¢, # 0 by Assumption 5.4, yields the desired result:
BL — _ﬁO (llLCrr + Oa.s.(l)) + Oa.s.(l) INCES _,BO;ULCT[ — ﬂo-

—HLCr + Oa.s.(l)) + Oa.s.(l) —HLCx

H.7 Proof of Theorem 6

Define the functions
1< 1 ¢
g(Ah A29 ﬁ) = A] + ﬁA2> and g_L,JI(ﬁ) = Z Z Al,f,ﬂ( + ﬂz Z Az,f,ﬂg'
=1 =1
Write the estimator /§L,ﬂ as the minimizer of [g"L’,[ (ﬁ)] 2.

12t A

A . — L =1 il

’BL’” = arg min [gL,zr(:B)] = 1yl AL
feB 1 2e=1D2er,
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for a compact parameter space B C R containing f), and note that it implies 0 = g, (ﬁAL,,,).

Consider a first-order Taylor expansion of g; . ( ﬂAL,,T) around the true parameter fy:

gLﬂ(ﬁ)

0= Grr(Brr) = grn(Bo) + =02 o

== (BLx — Po),

agL n(.B)

where ,B is an intermediate value between ,BL and fy, and =7 Lyl Mgz, Rearranging

gives:

‘/fg_L,n(ﬂo)
—1 2t Do,
_ ‘/f(% Z%:l Al,f,m + ﬂo% Z]E=1 AZ,[,m)
) ~1 %t Ao,
_ \/f(% Z%:l At + ﬂo% Z%:l Azpm,) + ‘/f% Z§=1(€A1,{’,m + Po€ny.e.r,)
) D
‘/_( ,BOL _1 Do n, +ﬁ0L Zi 1A21.’7L'g)+\/—2[ 1 Uem,

~1 S Daer,

1 oL
Vi D=1 Ut

VL(Brx - o) =

1 vL 1 vL
=7 2p=1 Dopm, — T Doy €nne
1 L
N Zf:l Ug ,
Zf 1 Az fmp —

Z[ 1 GAZZ

LpLC L#LC

where in the last line numerator and denominator are divided by prc,, different from zero by
Assumptions 5.3 and 5.4.

Consider the triangular array

{771'[

u
{urer, =—=:1<¢<L}
HLCx

By Lemma 8, each term u; ¢ ,, has mean zero and uniformly bounded 2 + § moments. Hence, by

the Lyapunov Central Limit Theorem for triangular arrays,

L
1 HLCx Uy “lm
\/zo-u,L,ﬂ =1 HLCx

N(O 1).

Recall that 0,1 , = \/ % 2%21 Var(uyr,). Lemma 8 proves that each Var(u,,,) does not depend on

the labeling of the corresponding cycle, and hence neither o, , does.
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Hence consider:

L faln L
\/_lchr[ \/Zo-uLn t=1 Ichn
OulLx T The, &t= 1A2£’m _Lch,, =1 €Nyt

and note that the argument used in Theorem 5 proves that the denominator converges to 1 almost

surely. Slutsky’s theorem hence allows to conclude

VIS (B, - o) S /\(o 1)

Ou,Ln

H.8 Proof of Proposition 2

Note that
af,ﬂ.’ = Al,t’,;r + ,BL,T[AZ,{’,H
= Ao, +€npem + Bra(Doer, + €nyer,)
= D, + PoDoem +€nsem + Po€ny,em +(Pra — Po)Doex
=0 Ue

and hence

2 2 A A A

Up s =Up, + 2ur (P — Bo) Az + (Bra — ,50) Azm
. 2 _1vL 2

Since 0, | = 1 2.y=q Uy ,,» to prove the result I need to prove that

L
3" (2tn = BB + (rn — o)) =

=1

L
:(BL,II’ - ﬂO)% Z (zuf,ﬂAZ,[,ﬂ) + (ﬁAL,rr - ﬁ())2
=1

(A2,.) 5 0.

Mh

~
I

1

Assumption 5 and Theorem 5 guarantee (,[§L,,r — fo) = 0p(1), %ZIE=1 U[’;-[Az’[’n = 0,(1), and
T L L =1 2 ¢ox = Op(1), and hence the result follows.
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H.9 Proof of Proposition 3

Define A, = (ai, — a;) (¥, — ¥j;). It suffices to show that there exists a constant ¢, with [c,| >

C, > 0 such that
1 &
E ¥ 5.
Ll = Z —1 A[ﬂ;’;ﬂf,z —as 0,

and that the collection {7}, e L | is independent of the error terms {7;;}.

t,z

First, the instruments z% and z‘/’ are deterministic. Hence, the induced signs {7/, nt,z} being
deterministic functions of the instruments, are independent of the error terms {7;;}, exogenous
by Assumption 5.1.

Next, note that

L
1 —_—
I Z(A[ —pL) (ﬁzzifgjz — V) = Z Aﬂr“n;f//z - ,uur“jﬂ/’
=1 L=
so that
1 &
I Z oy 7rt, = Z(A[ - ,uL)(Jr“n“ — V) + pp .
=1 L=
Similarly,

L
1 _ —_— —_— . —_—
- Z(nz‘z - JTO‘)(JTZZ —a¥) = nox¥ — x%n¥,
=

=~

which implies
menyy = I Z(ﬂgz - ﬁ)(ﬂzz — 1Y) + V.
=1

Substituting this expression yields

L

1

LD Ay, = ZW ~ ) (rfemy, = mond) + Zmz =7 (ry, — n¥) +
t=1

e~

Assumption 5.2 guarantees L — oo. In the limit, the first term on the right-hand side is
nonnegative by Assumption 6.3; the second is nonnegative by Assumptions 6.2 and 5.3; and the

third is bounded away from zero by Assumptions 6.1 and 5.3. The entire expression is hence

71



bounded away from zero as well, and Assumption 5.4 holds with ¢, > c,4cy.
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