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Abstract

This paper studies a class of models for two-sided interactions, where outcomes depend

on latent characteristics of two distinct agent types. Models in this class have two core ele-

ments: the matching network, which records which agent pairs interact, and the interaction

function, which maps latent characteristics of these agents to outcomes and determines the

role of complementarities. I introduce the Tukey model, which captures complementarities

with a single interaction parameter, along with two extensions that allow richer comple-

mentarity patterns. First, I establish an identification trade-off between the flexibility of the

interaction function and the density of the matching network: the Tukey model is identified

under mild conditions, whereas the more flexible extensions require dense networks that are

rarely observed in applications. Second, I propose a cycle-based estimator for the Tukey in-

teraction parameter and show that it is consistent and asymptotically normal even when the

network is sparse. Third, I use its asymptotic distribution to construct a formal test of no

complementarities. Finally, an empirical illustration shows that the Tukey model recovers

economically meaningful complementarities.
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1 Introduction

In many economic settings, outcomes result from the interaction of two distinct types of agents

and depend on the latent characteristics each side brings to the match. For example, wages reflect

both worker skills and firm attributes (Abowd et al., 1999); corporate performance depends on

managerial ability together with company-specific features (Bertrand and Schoar, 2003); and the

productivity of public offices is shaped by local conditions and the capacity of the bureaucrats in

charge (Fenizia, 2022).

Analyzing such settings requires using observable outcomes to (i) disentangle the contribu-

tions of the agents involved in the interaction, quantifying their latent characteristics, and (ii)

understand how these characteristics interact to generate outcomes. Doing so provides the foun-

dation for addressing a wide range of questions. In the labor market, for instance: are high-

productivity workers more likely to match with high-productivity firms? How much of wage

variation is due to worker heterogeneity versus firm heterogeneity? Which observable charac-

teristics correlate with latent productivities? What is the role of complementarities in this set-

ting? If complementarities matter and wages proxy for output, can counterfactual reallocation of

matches raise aggregate productivity?

To study these questions, this paper introduces the Bipartite Interaction (BI) framework,

which flexibly models two-sided interactions. Any model in this framework has two compo-

nents: (i) a matching network, where nodes represent agents and edges capture which pairs are

observed, and (ii) an interaction function, whichmaps the latent characteristics of matched agents

into observed outcomes. The matching network summarizes the pattern of available data, while

restrictions on the interaction function reflect assumptions about complementarities and gener-

ate distinct models within the framework. A well-known example is the two-way fixed effects

(TWFE) model, which assumes an additively separable interaction function and therefore rules

out complementarities. This model has become widely used by applied economists, particularly

following its influential application by Abowd et al. (1999).

Building on this framework, I introduce the Tukey model, named after John Tukey, who pro-

posed an analogous functional form in the context of nonlinear ANOVA (Tukey, 1949). The Tukey

model enriches the TWFE specification by allowing for complementarities in a simple and inter-

pretable way: it relies on the assumption that the cross-partial derivative of the interaction func-

tion is determined by a single scalar parameter. This interaction parameter entirely captures the

presence, strength, and direction of complementarities; when it equals zero, complementarities

vanish, and the model coincides with TWFE.

Next, I study two extensions of the Tukey model that accommodate richer complementarity

structures by relaxing the restriction of a constant cross-partial derivative. The first allows a
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firm-specific interaction parameter, permitting heterogeneity in complementarity across firms.

This specification uses the functional form in Bonhomme et al. (2019) but drops their grouping

assumption, treating each agent individually without clustering. The second extension imposes

no parametric restriction on the cross-partial derivative. It serves as a fully flexible nonparametric

benchmark, requiring only that the interaction function be monotone in both arguments.

Taken together, the BI framework, the Tukey model, and these extensions lead to three main

contributions. First, I show that identification in the BI framework reveals a trade-off between the

flexibility of the interaction function and the structure of the matching network: weaker assump-

tions on the interaction function require richer structure in the matching network. For example,

in the TWFE model, point identification requires only that the matching network be connected,

meaning any pair of nodes can be joined by a finite path of edges. This condition is no longer suf-

ficient in general. In the nonparametric specification, for instance, point identification requires

that any two nodes of the same type be linked by a path of length at most two. Importantly, the

trade-off is asymmetric: while the interaction function is unobserved and must be restricted by

assumption, the matching network is directly observed, and restrictions on it are straightforward

to check.

In empirical applications, researchers typically begin by choosing the restrictions to impose

on the interaction function. The results in this paper can then be used to verify whether the ob-

served matching network satisfies the corresponding conditions for parameter identification. For

the Tukey model, point identification requires the same connectedness condition as the TWFE

model, plus one additional requirement: the presence of at least one informative cycle of length

four in the matching network (a closed path involving four distinct edges and nodes). This con-

dition is often satisfied in practice, making the Tukey model a flexible and empirically applicable

alternative to the TWFE specification. By contrast, the requirements for point identification in

the two extensions are muchmore stringent and rarely met in empirical settings where two-sided

interactions are typically studied.

Second, I propose a new estimator in the Tukey model for the interaction parameter corre-

sponding to the cross-partial derivative of the interaction function, and study its properties in a

large-graph asymptotic analysis that does not require any agent to be observed many times. As

identification relies on the presence of a cycle in the matching network, the estimator uses mul-

tiple such cycles to average out noise and consistently estimate the parameter. Unlike alternative

methods in similar settings, the estimator does not require estimating latent characteristics. It is

consistent under the mild requirement that the number of cycles scales with graph size; in em-

ployer–employee matched data, I show that such cycles are typically abundant. The estimator is

asymptotically normal, with its variance shaped by three elements: (i) the variance of the out-

come error terms, (ii) heterogeneity in latent characteristics within cycles, and (iii) the ordering of
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agents in each cycle. Since the ordering depends on labels chosen by the researcher, I propose an

instrument-based procedure that assigns them using observable characteristics correlated with

latent productivities, ensuring consistency and asymptotic normality.

Third, I develop a formal test for the absence of complementarities in the BI framework. The

test exploits the nesting of the TWFE model within the Tukey model: since the TWFE specifica-

tion corresponds to the Tukey model with the interaction parameter equal to zero, testing this

null provides a direct test for the absence of complementarities. The assumption of no comple-

mentarities implied by the TWFEmodel is often discussed in empirical work, and several informal

diagnostics are in use, but a formal test has not, to my knowledge, been studied. The cycle-based

estimator for the interaction parameter does not require estimating any individual latent char-

acteristics, which allows construction of a test whose asymptotic properties can be studied by

an asymptotic analysis aligned with common data patterns, including cases where nodes in the

matching network have no more than two links.

To illustrate how the Tukey model can provide richer insights into two-sided interactions, I

revisit the application in Limodio (2021) on the interaction between public managers and tasks,

focusing on the implementation ofWorld Bank projects. The success of a project is modeled as the

outcome of the interaction between the ability of the manager in charge and the characteristics of

the country where they operate. Original estimates using the TWFE model found negative sort-

ing, with high-performing managers more likely to be matched with low-performing countries.

Estimates from the Tukey model add further insight: the interaction parameter is negative and

statistically different from zero, indicating negative complementarities, where high-performing

managers have larger value added when matched with low-performing countries. Given this

interaction function, negative sorting is optimal for maximizing average project success, which

may explain the allocation pattern documented in Limodio (2021) as a rational response to the

structure of complementarities.

1.1 Related Literature

The BI framework proposed in this paper is related to a wide range of earlier approaches to two-

sided interactions, many of which are reviewed in Bonhomme (2020). The benchmark in this class

is the TWFE, which assumes a modular (additively separable) interaction function. While most

empirical applications focus on worker-firm interactions (Abowd et al., 1999; Card et al., 2013;

Kline, 2024), TWFE-style methods have also been applied to other two-sided settings, includ-

ing managers and firms (Bertrand and Schoar, 2003), teachers and students (Jackson et al., 2014;

Chetty et al., 2014a,b), patients and healthcare providers (Finkelstein et al., 2016), and bureaucrats

and geographic postings (Fenizia, 2022; Limodio, 2021). Despite its versatility, the model relies
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on the strong modularity assumption, which rules out complementarities: the marginal produc-

tivity of each agent is assumed constant and independent of the other side of the match. In many

contexts, this contrasts with the emphasis placed on matching, where significant resources are

devoted to finding “the right match”.

To relax modularity, Bonhomme et al. (2019) propose a model in which the interaction func-

tion allows for complementarities across the latent characteristics of agents. Their approach as-

sumes that agents can be partitioned into a finite number of groups, with all members of a group

sharing the same latent characteristics. In practice, this requires researchers to assign agents to

groups, typically via a clustering procedure, and then estimate group-specific productivities and

intergroup complementarities. A similar approach is adopted in Lei and Ross (2024). These mod-

els introduce greater flexibility in the interaction function relative to TWFE and have delivered

valuable empirical insights (Weigel et al., 2024; Mourot, 2025), but rely on the grouped hetero-

geneity assumption. By contrast, the approach developed in this paper offers a feasible way to

introduce complementarities into two-sided interactions without relying on grouping.

Concerns about complementarities have also surfaced in many TWFE applications. A com-

mon strategy to justify their exclusion has been to estimate a saturated version of the model,

compare 𝑅2
values, and conclude, based on the typically small changes observed, that comple-

mentarities are not quantitatively important (Card et al., 2013; Song et al., 2019; Fenizia, 2022;

Adhvaryu et al., 2024). However, Kline (2024) shows that these 𝑅2
comparisons can be mislead-

ing and argues that complementarity patterns are better detected by focusing on cycles in the

matching network. Building on this insight, this paper develops a procedure to formally test the

absence of complementarities, providing a formal way to assess the assumption at the core of the

TWFE model.

Worker-firm interactions are the most common application for this TWFE model (Abowd

et al., 1999; Card et al., 2013; Kline, 2024), yet modeling labor markets in this “reduced form”

way has faced criticism (Eeckhout and Kircher, 2011; Hagedorn et al., 2017; Lopes de Melo, 2018;

Eeckhout, 2018). These concerns extend to the BI framework as well. Still, the framework remains

valuable: both in other domains where its structure may be more credible (as in the empirical

illustration) and as a foundation for re-examining labor markets under alternative, potentially

more realistic, restrictions than those implied by the TWFE model.

Related developments in balanced unit-time panel settings show the value of modeling inter-

actions beyond modularity. The model in Tukey (1949), for example, already incorporated com-

plementarities more richly, and many recent contributions extend this idea using factor models

or nonparametric interaction structures (Bai, 2009; Freyberger, 2018; Freeman andWeidner, 2023;

Sbai Sassi, 2024; Armstrong et al., 2025). Two differences distinguish the BI framework from clas-

sical panels. First, panel models typically focus on estimating coefficients on observed regressors,

4



whereas the BI framework aims to recover the interaction function and the fixed effects them-

selves. Second, panel analysis usually relies on observing all unit-time combinations, while the

BI framework is defined over incomplete matching networks in which only a subset of possible

matches is observed. As a result, the structure of the matching network is central to both identifi-

cation and inference in the BI framework, in contrast to panel settings where it is fixed by design

and excluded from the modeling analysis.

Because of this crucial role of the matching network, this paper also contributes to the liter-

ature on network econometrics. For identification, as in Bramoullé et al. (2009), Graham (2017),

and De Paula et al. (2018), I impose assumptions on the observed graph to ensure that parameters

can be identified, using a strategy that eliminates nuisance parameters to identify the interaction

coefficient, paralleling the approach of Jochmans (2017) for multiplicative models. For inference,

I consider an asymptotic regime in which the graph grows without requiring the number of real-

ized links to increase proportionally with the number of potential links, and allowing the number

of edges per node to remain bounded. Most existing inference results for sparse networks assume

degrees (numbers of edges per node) that may diverge with network size (Jochmans andWeidner,

2019; Cai, 2022). Exceptions that accommodate bounded-degree graphs, such as Verdier (2020)

and Auerbach et al. (2025), do not focus on parameters governing interactions. By explicitly al-

lowing for bounded degree, the present analysis better reflects the structure of many real-world

datasets on two-sided interactions and clarifies how the matching network affects the precision

of BI estimators.

1.2 Paper Structure and Notation

The remainder of the paper is organized as follows. Section 2 introduces the BI framework, the

Tukey model, and its extensions studied in this paper. Section 3 derives necessary and sufficient

conditions for parameter identification in the Tukey model and its extensions. Section 4 turns to

estimation in the Tukey model, mostly focusing on the estimator for the interaction parameter

and its asymptotic properties. Section 5 presents an empirical illustration, showing how the

Tukey model can be used in practice and how it provides additional insights into the interaction

function. Section 6 reports Monte Carlo simulations assessing the finite-sample performance of

the estimator. Section 7 concludes.

Throughout the paper, lowercase letters denote scalar parameters or quantities specific to an

individual agent, typically scalars but possibly vectors when productivities are multidimensional

(e.g., 𝛼𝑖 represents the latent productivity of worker 𝑖). Uppercase letters denote sets (e.g., 𝛼𝑖 ∈ 𝐴,
where𝐴 is typically a compact metric space). Bold symbols denote tuples: for example, 𝜶 denotes

the collection (𝛼1, . . . , 𝛼𝐼 ).
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2 Models

I present the Bipartite Interaction (BI) framework in the context of the labor market, where in-

teractions involve workers and firms. This setting serves as a concrete example for exposition,

but the framework itself is general and applies to any two-sided environment.

2.1 Bipartite Interaction Framework

Let 𝐼 ∈ N and 𝐽 ∈ N denote the number of workers and firms, respectively. Each worker 𝑖 has a

latent deterministic productivity 𝛼𝑖 ∈ 𝐴, and each firm 𝑗 has a latent deterministic productivity

𝜓 𝑗 ∈ Ψ, where 𝐴 and Ψ are compact subsets of R𝑑 . Let 𝜶 := (𝛼1, . . . , 𝛼𝐼 ) and 𝝍 := (𝜓1, . . . ,𝜓 𝐽 )
denote the collections of these productivities.

The potential outcome of the interaction between worker 𝑖 and firm 𝑗 , for example the wage

worker 𝑖 would receive if employed by firm 𝑗 , is

𝑦𝑖 𝑗 = 𝑓 (𝛼𝑖,𝜓 𝑗 )︸    ︷︷    ︸
𝜃𝑖 𝑗

+ 𝜂𝑖 𝑗 ,

where 𝑓 : 𝐴 × Ψ → R is the interaction function and 𝜂𝑖 𝑗 is a mean-zero random term. Define

𝜃𝑖 𝑗 := 𝑓 (𝛼𝑖,𝜓 𝑗 ) as the deterministic component of the outcome, equal to E[𝑦𝑖 𝑗 ], determined by

the interaction function and the productivities of the matched agents. To focus on 𝑓 , I omit

covariates. Incorporating covariates in the BI framework is a valuable extension not considered

in this paper.

To study the properties of 𝑓 , it is useful to consider the role of its cross-partial derivative,

which leads to the notions of modularity and complementarities. I formally define modularity

in Appendix A.1. Intuitively, when 𝛼𝑖 and 𝜓 𝑗 are scalars and 𝑓 is differentiable, the interaction

function is modular when the cross-partial derivative of 𝑓 is zero, supermodular when it is non-

negative, and submodular when it is nonpositive. This is closely related to complementarities. I

say that an interaction exhibits complementarities when the cross-partial derivative is nonzero,

which I call positive or negative when this derivative is positive or negative, respectively.

The potential outcome 𝑦𝑖 𝑗 is defined for all worker-firm pairs, representing the outcome that

would be realized if match (𝑖, 𝑗) occurred, whether or not it is observed in the data. In practice,

only a subset of matches is realized, and 𝑦𝑖 𝑗 is observed only for some pairs. Define

𝐷𝑖 𝑗 =


1, if 𝑦𝑖 𝑗 is observed,

0, otherwise,
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as the indicator of observed matches, treated as fixed in the analysis, and collect them in O𝐼 𝐽 =
{(𝑖, 𝑗) : 𝐷𝑖 𝑗 = 1}.

Let𝐺𝐼 𝐽 = ( [𝐼 ], [𝐽 ],O𝐼 𝐽 ) be the bipartite network linking worker 𝑖 to firm 𝑗 whenever 𝐷𝑖 𝑗 = 1.

𝐺𝐼 𝐽 is bipartite because its nodes are partitioned into two disjoint sets, workers and firms, with

no edges within the same set.

Definition 1. (Matching Network) The matching network𝐺𝐼 𝐽 is the bipartite graph with node sets
[𝐼 ] and [𝐽 ] and edge set O𝐼 𝐽 = {(𝑖, 𝑗) : 𝐷𝑖 𝑗 = 1}. An edge (𝑖, 𝑗) indicates that 𝑦𝑖 𝑗 is observed.

Figure 1 shows an example with 5 workers (purple), 3 firms (green), and 6 edges, each repre-

senting an observed outcome.

𝑖1

𝑖2

𝑖3

𝑖4

𝑖5

𝑗1

𝑗2

𝑗3

Figure 1: Matching network with nodes colored by type: workers in purple and firms in green. In this ex-

ample, 𝐼 = 5, 𝐽 = 3, and the set of observed matches is O𝐼 𝐽 = {(𝑖1, 𝑗1), (𝑖2, 𝑗1), (𝑖2, 𝑗2), (𝑖3, 𝑗2), (𝑖4, 𝑗2), (𝑖5, 𝑗3)}.

The fact that worker 𝑖2, for example, is linked to two firms ( 𝑗1 and 𝑗2) does not imply that

the matches occur simultaneously. The matching network is constructed over a chosen time

window, which may span several years, and each edge can correspond to a different period: 𝑖2

may be employed by 𝑗1 in one year and by 𝑗2 in another. The BI framework is static, abstracting

from the timing of moves, so it does not matter whether the match with 𝑗1 occurs before or after

the one with 𝑗2.

The matching network is deterministic: the BI framework does not model its formation,

and the structure of 𝐺𝐼 𝐽 is taken as given. The only source of randomness in the model are

the terms {𝜂𝑖 𝑗 }(𝑖, 𝑗)∈O𝐼 𝐽 , one for each observed outcome. These terms are mutually independent,

mean-zero, and may have pair-specific distributions, allowing for heteroskedasticity. Since 𝐺𝐼 𝐽

is non-random, whether the match (𝑖, 𝑗) is observed does not depend on 𝜂𝑖 𝑗 , making the random

term exogenous.

For any realized match (𝐷𝑖 𝑗 = 1), the model considers only a single outcome 𝑦𝑖 𝑗 . If repeated

observations of the same worker-firm pair are available, they can be averaged to yield a single

𝑦𝑖 𝑗 , leaving the analysis unchanged.
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Parameters of interest. The primitive parameters of the model are the interaction function

𝑓 and the productivity vectors 𝜶 and 𝝍. Recovering 𝑓 allows researchers to characterize how

worker and firm productivities map into the outcome. A central question is whether an agent’s

marginal productivity depends on the characteristics of the other agent in the match, and, when

this occurs, to describe the nature and pattern of such complementarities. The productivity vec-

tors 𝜶 and 𝝍, once linked to additional information on workers and firms, shed light on the

determinants of productivity differences. For example, regressing 𝜶 on worker demographics

reveals which observable traits drive variation in worker productivity.

Together, 𝜶 and 𝝍 permit the study of assortative matching, the tendency of workers and

firms with similar relative productivities to pair together. A common measure of sorting is the

correlation between 𝛼𝑖 and𝜓 𝑗 across observed matches: one constructs a vector containing 𝛼𝑖 for

eachmatch (𝑖, 𝑗), a second vector with the corresponding𝜓 𝑗 , and then computes their correlation.

A positive value indicates positive sorting, whereas a value near zero or negative suggests weak

or reverse sorting.

Joint knowledge of 𝑓 , 𝜶 , and 𝝍 also enables decomposing outcome variance, quantifying

the shares attributable to worker heterogeneity, firm heterogeneity, and their interaction. These

quantities further allow measuring factor misallocation by comparing observed matches to the

efficient allocation, and support counterfactual analyses in which workers are reassigned across

firms.

These examples illustrate the wide range of parameters of interest that can be derived from

𝑓 , 𝜶 , and 𝝍 as primitive inputs. A comprehensive treatment of all such parameters is beyond the

scope of this paper. The focus herewill be on primitive 𝑓 , 𝜶 , and 𝝍 under different assumptions on

𝑓 and 𝐺𝐼 𝐽 , occasionally using selected derived quantities to highlight key features of the results.

Functional specifications. Imposing restrictions on the interaction function within the BI

framework yields distinct models. I focus on three specifications: the Tukey model, the BLM

model, and the seriation model. The next sections describe each of these models and discuss

their economic interpretation. Appendix A formalizes their connection to shape restrictions on

𝑓 , showing how their functional forms emerge from broader assumptions.

2.2 Tukey Model

The cross-partial derivative of 𝑓 captures the complementarity structure of the interaction func-

tion in the BI framework. A natural way to introduce flexibility is to assume that this cross-partial

8



derivative is constant, summarized by a single parameter. This yields the specification

𝜃𝑖 𝑗 = 𝛼𝑖 +𝜓 𝑗 + 𝛽0𝛼𝑖𝜓 𝑗 , (Tukey model)

with 𝛽0 ∈ 𝐵 ⊂ R compact. I refer to this as the Tukeymodel, after the statistician John Tukey, who

studied an analogous functional form in two-way ANOVA to test whether two categorical factors

affect the response additively (Tukey, 1949; Ward and Dick, 1952; Šimeček and Šimečková, 2013).

In that setting, the focus is on testing the null hypothesis 𝛽0 = 0 under restrictive assumptions

(homoskedastic, normally distributed errors 𝜂𝑖 𝑗 and complete matching network 𝐺𝐼 𝐽 ), and no

attention is given to the estimation of the parameter itself.

Conversely, in the BI framework, the interaction parameter 𝛽0 in the Tukey model acquires

a direct economic meaning. It is the constant cross-partial 𝜕2𝑓 /𝜕𝛼𝜕𝜓 , capturing all departures

from modularity and governing the complementarity pattern between the two productivities.

Despite its parsimony, where the entire complementarity structure is summarized by a single

parameter, the Tukey model is flexible enough to encompass supermodular (𝛽0 ≥ 0), submodular

(𝛽0 ≤ 0), and modular (𝛽0 = 0) interaction functions. The sign of 𝛽0 determines the direction

of complementarities, while its magnitude reflects the relative weight of the multiplicative com-

ponent compared to the additive one: as |𝛽0 | grows, the role of the match itself becomes more

important.

2.2.1 Tukey as Extension of TWFE Model

When 𝛽0 = 0, the Tukey model reduces to the widely used TWFE specification, in its baseline

form without covariates:

𝜃𝑖 𝑗 = 𝛼𝑖 +𝜓 𝑗 . (TWFE model)

In the TWFE model, the cross-partial derivative 𝜕2𝑓 /𝜕𝛼𝜕𝜓 is zero, so the interaction function

is modular and complementarities are ruled out by assumption. The marginal contribution of a

worker (firm) is independent of the firm (worker) they are matched with and remains constant

across all matches. Under modularity, for a fixed set of matched agents, total output depends

only on individual productivities and is invariant to the assignment of matches: any allocation is

efficient.

While the assumption of no complementarities is restrictive, especially given the emphasis in

economic theory on complementarities as a driver of sorting patterns such as positive assortative

matching (Becker, 1973; Shimer and Smith, 2000), its appropriateness depends on the empirical

setting and the research question. In practice, the TWFE model is often viewed less as a literal
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description of interactions and more as a tractable approximation to richer structures (Abowd

et al., 1999; Card et al., 2013). The nesting of TWFE within the Tukey model makes it possible

to assess when this approximation is likely to be informative and, conversely, when ignoring

complementarities may lead to misleading conclusions; see Remark 2 for details.

2.3 Beyond Tukey Model

The Tukey model introduces complementarities in a simple and interpretable way. To capture

richer complementarity patterns, one can relax its restrictions and consider more flexible inter-

action functions: the BLM model allows the interaction parameter to be firm-specific, accom-

modating heterogeneity in complementarities across firms; the seriation model provides a fully

nonparametric alternative, imposing only monotonicity and leaving the cross-partial derivative

unrestricted.

2.3.1 BLM Model

Rather thanmodeling firm productivity as a scalar, suppose instead that each firm is characterized

by a productivity vector𝜓 𝑗 = (𝑏 𝑗 , 𝑎 𝑗 ). This leads to the specification

𝜃𝑖 𝑗 = 𝑎 𝑗 + 𝑏 𝑗𝛼𝑖, (BLM model)

where each firm is endowed with both an intercept and a slope, each varying across firms.

This interaction function is the one studied by Bonhomme et al. (2019), which motivates the

label BLMmodel. In their approach, the functional form is embedded in a grouped setting, where

all firms and workers within a group share the same latent characteristics. In the BI framework,

by contrast, the BLM model refers to the case in which each group consists of a single worker or

a single firm.

The BLM model nests the Tukey model as a special case: when 𝑏 𝑗 = 1 + 𝛽0𝑎 𝑗 for all 𝑗 , or

equivalently 𝛽0 =
𝑏 𝑗−1

𝑎 𝑗
, the specification reduces to the Tukey one, with𝜓 𝑗 = 𝑎 𝑗 . The BLM model

can thus be viewed as a generalization of the Tukey model, where the slope parameter capturing

complementarities varies across firms. This additional flexibility allows researchers to distinguish

a firm’s intrinsic productivity 𝑎 𝑗 , which enters the model in levels, from its capacity to extract

value from workers and exploit complementarities, governed by 𝑏 𝑗 . Unlike the Tukey model,

which implicitly ties these two roles together, the BLM model permits them to differ, thereby en-

abling empirical investigation of whether more productive firms are also those in which workers’

marginal productivity is higher.
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2.3.2 Seriation Model

The BLMmodel imposes a specific parametric form on the interaction function. As a benchmark,

it is useful to also consider a specification that removes all parametric restrictions on the cross-

partial derivative and allows for fully flexible complementarities. The natural analogue comes

from nonparametric regression: when the interest is in learning E[𝑌 |𝑋 ] nonparametrically from

observations of continuous random variables 𝑌 and 𝑋 , some regularity assumptions are needed,

typically smoothness. Similarly, in the bipartite interaction setting, some regularity condition on

𝑓 is necessary to ensure that the data are informative.

I retain scalar productivities and impose a monotonicity assumption on 𝑓 , leaving the cross-

partial unrestricted:

𝜃𝑖 𝑗 = 𝑓𝑚 (𝛼𝑖,𝜓 𝑗 ), (Seriation model)

with 𝑓𝑚 : 𝐴 × Ψ → R increasing in both arguments. The monotonicity assumption in a bipartite

network setting connects directly to seriation problems in statistics (Flammarion et al., 2019) and

to matrix-completion approaches for bivariate isotonic matrices under unknown permutations

(Mao et al., 2020). Outside the bipartite setting, it is also related to nonparametric latent-space

models for network formation; see, for example, Gao (2020) and references therein.

Monotonicity is a common shape restriction in economics (see the survey in Chetverikov

et al. (2018)). In this context, it requires that the ranking of average outcomes produced by two

workers (firms), when matched with the same firm (worker), is preserved across all matches. This

property holds, for example, in the TWFE model.

The seriation model imposes no parametric restriction on 𝑓𝑚: when it is twice differentiable,

monotonicity ensures constant signs for the partial derivatives but imposes no constraint on the

cross-partial derivatives that capture complementarities. As a result, the complementarity pattern

is highly flexible: the same firm can exhibit supermodular or submodular behavior depending on

the productivity of the worker it is matched with. This is not possible in the BLM model, where

the cross-partial derivative is fixed for each firm and does not vary across workers.

2.4 Trade-off in BI Framework

The three models described above, together with the TWFE model, trace out a spectrum within

the BI framework. At one end lies the fully modular TWFE model, which rules out complemen-

tarities altogether. At the other end is the seriation model, which only imposes monotonicity

and allows complementarities to vary freely across matches. The Tukey and BLM models sit

between these extremes: they restrict the complementarity structure parametrically, but retain

11



more flexibility than the TWFE model.

A second dimension of variation arises from the matching network 𝐺𝐼 𝐽 , which encodes the

observed links between workers and firms. In the most informative case, 𝐺𝐼 𝐽 is complete, with

𝐷𝑖 𝑗 = 1 for every pair. At the opposite extreme, the graph may be sparse (with far fewer links

than the maximum possible) and fragmented, with each firm linked to only a handful of workers,

and vice versa.

Together, the interaction function 𝑓 and the network 𝐺𝐼 𝐽 determine what can be learned

from the data. The function 𝑓 and the dimensions 𝐼 and 𝐽 dictate how many parameters must

be recovered, while the structure of𝐺𝐼 𝐽 governs how much information is available. This creates

a trade-off: richer flexibility in 𝑓 requires stronger assumptions on 𝐺𝐼 𝐽 , while sparser networks

can only be informative under more restrictive assumptions on 𝑓 .

This trade-off is asymmetric. The function 𝑓 is unobserved and summarizes the latent inter-

action between workers and firms;𝐺𝐼 𝐽 is observed and can be inspected directly. Restrictions on

𝐺𝐼 𝐽 can therefore be verified in the data, while restrictions on 𝑓 cannot. For the TWFE model,

Abowd et al. (1999) and Jochmans and Weidner (2019) provide conditions on 𝐺𝐼 𝐽 for identifying

and, under additional assumptions, estimating the productivity parameters. For the Tukey, BLM,

and seriation models, there are no results that allow the matching network to be incomplete. In

the next section, I derive the necessary and sufficient conditions that link the structure of 𝑓 with

the shape of𝐺𝐼 𝐽 , extending identification results to incomplete and possibly sparse graphs. These

conditions involve some requirements on the matching network𝐺𝐼 𝐽 . For each requirement, I will

also briefly assess its plausibility in the context of employer-employee data.

In applications, the researcher can proceed in two steps. First, select the restriction on 𝑓 that

best fits the economic environment. Then, use these results to check whether the observed 𝐺𝐼 𝐽

satisfies the corresponding conditions. When the focus is on point-identification, three outcomes

are possible: (i) the parameters are not identified; (ii) they are identified but not consistently

estimable; (iii) they are both identified and consistently estimable. Clarifying which case applies

is essential for understanding what questions the data can credibly answer. Naturally, the richer

and more connected the graph, the wider the scope of questions that can be addressed.

3 Identification

I analyze identification in the Tukey, BLM and seriation models. Section 3.1 introduces the notion

of identification adopted for the BI framework. Sections 3.2, 3.3, and 3.4 present the identification

results for the three models. Finally, Section 3.5 revisits the trade-off between the flexibility of

the interaction function and the structure of the matching network in light of these results.
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3.1 Identification in BI Framework

I adopt the classical notion of point identification from Koopmans (1949), which requires that

the model parameters be uniquely recoverable from the distribution of observables. In the BI

framework, the observables are the collection {𝑦𝑖 𝑗 }(𝑖, 𝑗)∈O𝐼 𝐽 . Hence, for identification purposes, I

can treat E[𝑦𝑖 𝑗 ] = 𝜃𝑖 𝑗 as known for each observed match.

Formally, I study identification through the noiseless map

(𝑓 ,𝜶 , 𝝍,𝐺𝐼 𝐽 ) ↦→ 𝜽O := {𝜃𝑖 𝑗 }(𝑖, 𝑗)∈O𝐼 𝐽 ,

where (𝑓 ,𝜶 , 𝝍) are unknown and the graph 𝐺𝐼 𝐽 is known. The parameter vector (𝑓 ,𝜶 , 𝝍) is
point-identified if the map

(𝑓 ,𝜶 , 𝝍) ↦→ 𝜽O

is injective: that is, whenever parameters (𝑓 ,𝜶 , 𝝍) and (𝑓 ′,𝜶 ′, 𝝍′) generate the same 𝜽O , they

must coincide exactly.

In practice, a parameter is identified if and only if it can be expressed as a function of 𝜽O : this

is the equivalence I will use to establish identification in the proofs.

This definition deliberately abstracts from sampling noise and treats the distribution of each

𝑦𝑖 𝑗 as known, even though in applications each match is typically observed only once. While such

a notion does not distinguish between parameters that can or cannot be consistently estimated

in the presence of error terms 𝜂𝑖 𝑗 , it provides a fundamental benchmark: if a parameter is not

identified in the noiseless model, then no estimator can recover it. Conversely, whenever a pa-

rameter is identified in this sense, it warrants further analysis to determine whether, and under

what conditions, consistent estimation is feasible.

A location normalization is often necessary, since the absolute levels of 𝜶 and 𝝍 are not

uniquely determined by the observables. In the TWFE model, for example, adding a constant to

all 𝛼𝑖 and subtracting it from all 𝜓 𝑗 leaves 𝜽O unchanged; the same invariance holds in richer

specifications with complementarities, where shifts in 𝜶 can be offset by changes in 𝝍 and 𝑓

without altering 𝜽O . To fix the reference level and ensure point identification, a normalization

such as

∑
𝑖 𝛼𝑖 = 0 or 𝛼1 = 0 is imposed. Whenever such a normalization is required, I state it

explicitly and adopt the form that yields the clearest formulas.

Remark 1. (Partial Identification) This paper focuses on point identification as a starting point
for studying flexible complementarity patterns in the BI framework. The same noiseless approach
can, however, be extended to partial identification, where the identified set for (𝑓 ,𝜶 , 𝝍) is given by
the set of counterimages of the observed 𝜽O . Because matching networks are often sparse and the
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conditions for point identification difficult to satisfy, partial identification results provide a way to
extract meaningful information about the underlying economic structure even when point identifi-
cation fails. Extending the BI framework in this direction appears hence especially promising, and
future work could build on recent advances such as Crippa and Fedchenko (2025), who study partial
identification in the distinct but related pairwise interaction model.

3.2 Identification in Tukey Model

The Tukey model introduces complementarities in the interaction function through a single pa-

rameter, 𝛽0, which represents the constant cross-partial derivative and fully characterizes 𝑓 . I

present the identification results in two steps: first, the identification of 𝛽0; second, the identifi-

cation of 𝜶 and 𝝍.

3.2.1 Identification of 𝛽0

Identifying 𝛽0 requires additional structure on the matching network𝐺𝐼 𝐽 . I begin by recalling the

notion of a cycle in a bipartite graph.

Definition 2. (Cycle in the Matching Network) In the bipartite graph𝐺𝐼 𝐽 = ( [𝐼 ], [𝐽 ],O𝐼 𝐽 ), a cycle
of length 2𝐾 (𝐾 ≥ 2) is a closed alternating sequence of workers and firms

𝑖1, 𝑗1, 𝑖2, 𝑗2, . . . , 𝑖𝐾 , 𝑗𝐾 , 𝑖1

such that, for each 𝑘 = 1, . . . , 𝐾 , (𝑖𝑘 , 𝑗𝑘) and (𝑖𝑘+1, 𝑗𝑘) belong to O𝐼 𝐽 (with 𝑖𝐾+1 = 𝑖1), and all 𝑖1, . . . , 𝑖𝐾
and 𝑗1, . . . , 𝑗𝐾 are distinct.

The graph in Figure 2a contains no cycles: no path starts and ends at the same node while

traversing distinct edges. By contrast, adding an edge between 𝑖1 and 𝑗2, as in Figure 2b, creates

the closed path 𝑖1, 𝑗1, 𝑖2, 𝑗2, 𝑖1, which forms a cycle of length 4.

The key condition required for identification of 𝛽0 is given in Assumption 1.

Assumption 1. (Informative cycle) The matching network𝐺𝐼 𝐽 contains a length-4 cycle 𝑖1, 𝑗1, 𝑖2, 𝑗2
such that 𝛼𝑖1 ≠ 𝛼𝑖2 and𝜓 𝑗1 ≠ 𝜓 𝑗2 .

Assumption 1 requires the presence of a 4-cycle in which both workers and firms differ in pro-

ductivity. Such heterogeneity is crucial: without it, the outcomes along the cycle would not vary,

and the cycle would provide no information about 𝛽0. When heterogeneity is present, however,

the cycle reveals contrasts across matches that make the interaction parameter point-identified.

Theorem 1. (Identification of 𝛽0) Under the Tukey model, Assumption 1 is sufficient for identifica-
tion of 𝛽0. If the matching network contains no more than one cycle, it is also necessary.
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Figure 2: Two examples of matching networks: (a) a network without cycles, and (b) a network containing

a cycle of length four. In panel (b), the cycle is formed by the sequence of nodes 𝑖1 → 𝑗1 → 𝑖2 → 𝑗2 → 𝑖1.

Identification of 𝛽0 hence requires the presence of a cycle in the matching network, and if

that cycle is unique, it must be of length four. The proof (Appendix H.1) shows that outcomes

from a cycle of length 2𝐾 generate a degree-(𝐾 − 1) polynomial in 𝛽0, with coefficients given by

known functions of 𝜽O . The identification set consists of the roots of this polynomial. When the

network contains at most one cycle, point identification requires 𝐾 = 2, i.e. a cycle of length 4.

More generally, a cycle of length 2𝐾 yields an identification set with 𝐾 − 1 elements. If multiple

longer cycles are present, the intersection of their identification sets can reduce to a singleton,

achieving point identification.

The role of cycles in detecting departures frommodularity was previously noted by Card et al.

(2013) and discussed by Kline (2024), though in those cases cycles were used as a diagnostic device

rather than as a source of identification for an interaction parameter.

In the labor market setting, Assumption 1 requires some degree of worker mobility across

firms. Because eachworker can bematchedwith only one firm at a time, themultiple links needed

for a cycle arise only when workers change employers. The condition therefore, requires that, for

some pair of firms, at least two movers exist, and that both the workers and the firms involved

differ in productivity. This is not especially restrictive: labor markets are typically segmented

into local or sectoral clusters, and when one worker moves between two firms, the likelihood

of additional movers between the same firms is higher than under random matching. Evidence

supports this: in the application of Kline (2024), for instance, about 55% of firms belong to at least

one cycle.

3.2.2 Identification of 𝜶 and 𝝍.

Once 𝛽0 is identified, the productivity vectors 𝜶 and 𝝍 in the Tukeymodel can be identified under

an additional condition on 𝐺𝐼 𝐽 .
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Assumption 2. (Connectedness) The matching network𝐺𝐼 𝐽 is connected: for any two nodes (work-
ers or firms) in 𝐺𝐼 𝐽 , there exists a path (i.e., a sequence of nodes linked by edges) joining them.

The graph in Figure 3a violates Assumption 2, since no path exists, for example, from node 𝑖4

to node 𝑖5. Adding an edge between 𝑖4 and 𝑗3, as in Figure 3b, makes the graph connected.

𝑖1
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𝑖3

𝑖4

𝑖5

𝑗1

𝑗2

𝑗3

(a)

𝑖1

𝑖2

𝑖3

𝑖4

𝑖5

𝑗1

𝑗2

𝑗3

(b)

Figure 3: Two examples ofmatching networks: (a) a non-connected network, and (b) a connected network,

which satisfies Assumption 2.

The identification result for 𝜶 and 𝝍 in the Tukey model is reported below.

Theorem 2. (Identification of 𝜶 and 𝝍 in the Tukey model) Under the Tukey model and the
normalization 𝛼𝑖0 = 0, if 𝛽0 is identified, Assumption 2 is necessary and sufficient for identification
of 𝜶 and 𝝍.

Theorem 2 extends the classical identification result for the TWFE model: it requires knowl-

edge of 𝛽0, but allows this parameter to differ from zero. The proof proceeds by first showing that,

for each observed match, one can construct a function of 𝜽O and the identified 𝛽0 that equals the

product of known functions of the corresponding worker and firm productivities. Connectedness

of𝐺𝐼 𝐽 then guarantees that all worker and firm effects can be recovered up to the normalization,

completing the identification argument.

In labor market applications, the matching network is rarely fully connected, especially over

short time horizons. A common practice is therefore to restrict the analysis to the largest con-

nected component. For example, in the West German labor market studied by Card et al. (2013),

the largest component contains over 95% of workers and 90% of firms. Similar firm coverage is

reported by Bonhomme et al. (2023) for Austria, Italy, Sweden, Norway, and the United States,

although worker coverage is often much lower, in some cases falling below 50%.

Theorems 1 and 2 highlight the additional requirements introduced by allowing complemen-

tarities. Relative to the TWFE model, the Tukey model imposes only a modest cost: the same

connectedness condition is needed, with the sole extra requirement that the graph contain at

least one informative cycle to identify 𝛽0. This result exploits the fact that 𝛽0 is a global parame-

ter: it governs the entire interaction function 𝑓 and does not vary across specific workers or firms.
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Hence, it can be identified using local information in 𝐺𝐼 𝐽 and then applied across all matches to

recover 𝜶 and 𝝍.

The Tukeymodel, therefore, offers a simple and flexible way to incorporate complementarities

into the BI framework, while requiring only minimal conditions on the matching network for

identification. By contrast, as I show in the following sections, more general specifications such

as the BLM and seriation models demand substantially stronger network requirements, which

are typically stringent and rarely satisfied in applications.

Remark 2. (TWFE as Approximation) The TWFE model is often defended on the grounds that
the benefits of departing from modularity are limited, making it a useful approximation even when
interactions exhibit some complementarities. The nesting of TWFEwithin the Tukeymodel, combined
with the focus on the noiseless case, allows this claim to be evaluated formally. In Appendix B,
I study when the TWFE specification provides a good approximation to interactions governed by
the Tukey model. The results show that relying on TWFE can yield misleading conclusions once
complementarities play a non-negligible role. In particular, I derive the bias implied by the TWFE
specification and show that, for example, in settings with a supermodular interaction function and
strong positive sorting, the sorting captured by TWFE can be zero. In such cases, hence, the TWFE
model would incorrectly suggest the absence of sorting.

3.3 Identification in BLM Model

The BLM model extends the BI framework by allowing each firm to have its own interaction

parameter. Bonhomme et al. (2019) study this specification under the assumption that workers

and firms are partitioned into groups, with all agents in a group sharing the same productivity.

Grouping substantially reduces the effective number of nodes in the matching network, since

each group can be represented as a single node connected to many others. Under the assump-

tion that the matching network is complete, Bonhomme et al. (2019) show that 𝛼𝑖 , 𝑎 𝑗 , and 𝑏 𝑗 are

point-identified. Completeness, however, is stronger than necessary. In what follows, I estab-

lish a weaker connectivity condition on 𝐺𝐼 𝐽 that still ensures identification of the productivity

parameters.

To formalize this condition, I introduce the following property of the bipartite graph 𝐺𝐼 𝐽 .

Definition 3. (Seed-and-Snowballs Connectivity)Abipartite graph𝐺𝐼 𝐽 satisfies Seed-and-Snowballs
connectivity if there exists a “seed” firm 𝑗0 ∈ 𝐽 from which one can reach all nodes by iterating the
following steps:

1. Seed. Set 𝑆 𝐽
0
= { 𝑗0}.

2. Snowball. For 𝑛 = 0, 1, 2, . . . :
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(a) Add to 𝑆 𝐼𝑛 all workers connected to at least one firm in 𝑆 𝐽𝑛 :

𝑆 𝐼𝑛 = {𝑖 ∈ 𝐼 : deg
𝑆
𝐽
𝑛
(𝑖) ≥ 1}.

(b) Add to 𝑆 𝐽
𝑛+1 all firms connected to at least two workers in 𝑆 𝐼𝑛 :

𝑆
𝐽

𝑛+1 = 𝑆
𝐽
𝑛 ∪ { 𝑗 ∈ 𝐽 : deg𝑆 𝐼𝑛

( 𝑗) ≥ 2},

with deg𝑆 (𝑖) indicating the number of links between node 𝑖 and nodes in 𝑆 . If for some 𝑁 the process
yields 𝑆 𝐽

𝑁
= 𝐽 and 𝑆 𝐼

𝑁
= 𝐼 , the graph satisfies the property.

Intuitively, the procedure alternates between (i) adding all workers linked to any firm already

in the snowball and (ii) adding all firms connected to at least two of the workers in it. The “two-

worker” condition guarantees that each newly added firm lies on a cycle, and that these cycles

overlap so the snowball can propagate through the graph. In Figure 4a, the property fails because

firm 𝑗3 is not part of any cycle. Adding the edge (𝑖5, 𝑗1), as in Figure 4b, creates overlapping cycles
and makes the graph Seed-and-Snowballs connected.

To verify this, run the iterative procedure with 𝑗1 as the seed, so that 𝑆
𝐽

0
= { 𝑗1}. First, include

the workers linked to the seed: 𝑆 𝐼
0
= {𝑖1, 𝑖2, 𝑖5}. Then, add firms linked to at least two of these

workers: 𝑆
𝐽

1
= { 𝑗1, 𝑗2}. Repeating the process yields 𝑆 𝐼1 = {𝑖1, 𝑖2, 𝑖5, 𝑖3, 𝑖4} and 𝑆

𝐽

2
= { 𝑗1, 𝑗2, 𝑗3}. Since

the snowball eventually reaches every node, the graph satisfies Seed-and-Snowballs connectivity.
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(b)

Figure 4: Two examples of matching networks: (a) a network that does not satisfy Seed-and-Snowballs

connectivity, and (b) a network that does.

To the best of my knowledge, this property has not been discussed in the existing network

literature. Appendix C shows that it is sufficient for the form of connectivity required by Kline

et al. (2020) to ensure the validity of their variance estimator in the TWFE model, where the

matching network must remain connected after removing any single worker node along with its

incident edges.
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As in the Tukey model, Seed-and-Snowballs connectivity must be complemented by sufficient

heterogeneity in the productivities appearing in the restrictions to obtain the key condition for

identification.

Assumption 3. (Informative Seed-and-Snowballs) The matching network 𝐺𝐼 𝐽 satisfies Seed-and-
Snowballs connectivity, with the additional requirements that: (i) when computing deg

𝑆
𝐽
𝑛
(𝑖), only

edges to firms with non-zero slopes are counted; and (ii) when computing deg𝑆 𝐼𝑛
( 𝑗), only edges to

workers with distinct productivities are counted.

Intuitively, since the BLM model generalizes the Tukey model by allowing a firm-specific

interaction parameter, Assumption 3 extendsAssumptions 1 and 2. It requires that each firm lie on

a cycle involving heterogeneous productivities, and that these cycles overlap at least at one node.

This overlap enables information to propagate through the network and ensures identification of

the parameters in the BLM model, as formalized in the next theorem.

Theorem 3. (Identification in the BLM model) Under the BLM model and the normalization 𝑎 𝑗0 =
𝑏 𝑗0 = 1, Assumption 3 is necessary and sufficient for identification of 𝜶 , 𝒂, and 𝒃 .

While Assumption 3 is necessary for identification, it demands a matching network far richer

than what is typically observed in applications. In the labor market context, for example, Kline

(2024) finds that nearly half of the firms in their data are not part of any cycle, implying that their

productivities cannot be identified. This is only a lower bound: being part of a cycle is not enough,

since the cycles must also share at least one node. As a result, even under favorable conditions, the

BLM model would fail to identify the productivity of a large share of firms, limiting its empirical

applicability.

Theorem 3 thus highlights that the additional flexibility of firm-specific complementarities

comes at a steep cost: the matching network must satisfy a stringent requirement that is rarely

met in practice. Point identification in the BLM model is therefore challenging in most empirical

settings with two-sided interactions, unless one imposes additional dimension-reduction restric-

tions such as those in Bonhomme et al. (2019).

3.4 Identification in Seriation Model

One might ask whether the restrictive graph condition found for identification with the BLM

model is driven not by its richer interaction function, but by the use of multidimensional firm

productivity, which introduces additional parameters.

The seriation model provides an alternative: it allows fully flexible complementarities while

retaining scalar productivities. Here, the interaction function is left entirely nonparametric. As
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the next proposition shows, this flexibility comes with a sharp limitation: 𝑓𝑚 , 𝜶 , and 𝝍 can be

recovered only up to strictly monotonic reparameterizations.

Proposition 1. (Lack of cardinal identification in the seriation model) Model (𝑓𝑚,𝜶 , 𝝍,𝐺𝐼 𝐽 ) can
be identified only up to any strictly increasing reparameterization of 𝜶 and 𝝍.

Proposition 1 implies that only the ordinal information (the ranking) of worker and firm pro-

ductivities can be identified. Cardinal differences are not preserved under strictly monotonic

transformations, so 𝑓𝑚 , 𝜶 , and 𝝍 cannot be separately identified.

While this prevents recovery of productivity levels, the ranks of {𝛼𝑖} and {𝜓 𝑗 }, and thus

the rankings of the vectors 𝜶 and 𝝍, are still identified. Rank-based methods can therefore be

employed to study sorting patterns and the determinants of productivity ranks without imposing

cardinal structure.

To state an identification condition for the seriation model, I first introduce the notion of

within-side diameters.

Definition 4. (Within-side Diameter) The within-side diameters of a graph 𝐺𝐼 𝐽 are the largest
shortest-path distances between any two nodes on the same side of the bipartition: letting 𝑑 (𝑢, 𝑣) be
the number of edges in the shortest path between nodes 𝑢 and 𝑣 ,

diamI(𝐺𝐼 𝐽 ) = max

𝑖,𝑖′∈𝐼
𝑑 (𝑖, 𝑖′), diamJ(𝐺𝐼 𝐽 ) = max

𝑗, 𝑗 ′∈𝐽
𝑑 ( 𝑗, 𝑗 ′).

In the graph of Figure 4a, the within-side diameter for 𝐼 is 4, as the shortest path from 𝑖1

to 𝑖5 spans four edges. For 𝐽 , the diameter is 4, corresponding to the path between 𝑗1 and 𝑗3. In

Figure 4b, the diameter for 𝐽 falls to 2 thanks to the shorter path 𝑗1 → 𝑖5 → 𝑗3, while the diameter

for 𝐼 remains 4.

The following condition for identification in the seriation model directly involves the within-

side diameters.

Assumption 4. (Diameter 2) The matching network 𝐺𝐼 𝐽 has within-side diameters equal to two.

Assumption 4 requires that every pair of workers shares at least one common firm, and every

pair of firms shares at least one common worker. This ensures that all nodes on the same side

of the bipartition are linked through a single intermediary on the opposite side. The graph in

Figure 5a fails this property, as workers 𝑖3 and 𝑖5 have no firm in common. Adding the edge

(𝑖3, 𝑗3), as in Figure 5b, creates the necessary connections and yields within-side diameters of

two.

The next result shows that a within-side diameter of two is exactly the connectivity needed

to recover the rankings of 𝜶 and 𝝍.
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Figure 5: Two examples of matching networks: (a) a network that does not satisfy Assumption 4, and (b)

a network that does, with within-side diameter equal to 2.

Theorem 4. (Identification of rankings in the seriation model) Under the Seriation model, As-
sumption 4 is necessary and sufficient for identification of the rankings of 𝜶 and 𝝍.

From an empirical standpoint, Assumption 4 is strong: it requires that every pair of workers

have at least one firm in common and that every pair of firms share at least one worker. In labor

market data, this would mean that any two workers have worked for the same firms, an unlikely

occurrence outside of small or highly interconnected markets. As with the BLM model, the seri-

ationmodel therefore has limited empirical applicability when the focus is on point identification.

That said, point identification is not always essential for extracting useful information from

the data. Even when Assumption 4 fails, the seriation model can still deliver partial identification

of the productivity rankings. Although I do not study partial identification in this paper, it remains

a promising direction to explore. Following the approach by Crippa and Fedchenko (2025), for

example, one could derive informative sets for the rankings of 𝜶 and 𝝍.

3.5 Identification Trade-off

When the identification conditions for the TWFE, Tukey, BLM, and seriation models are com-

pared, the trade-off introduced in Section 2.4 becomes clear: weaker restrictions on the interac-

tion function require richer structure in the matching network.

Theorems 3 and 4 show that the conditions for point identification in the BLM and seriation

models are unlikely to be satisfied in most empirical settings involving two-sided interactions.

By contrast, Theorems 1 and 2 demonstrate that the interaction parameter 𝛽0, together with 𝜶

and 𝝍, can be identified under assumptions that are plausibly met in practice.

The Tukeymodel thus emerges as a more flexible yet tractable alternative to the TWFEmodel.

It is flexible because it accommodates complementarities, through the parameter 𝛽0. It is tractable

because it imposes only mild requirements on the network, unlike its extensions and similarly to

the TWFE. In the next section, I show that the additional interaction parameter can be consistently
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estimated under assumptions that are commonly satisfied by matching networks observed in

applications.

4 Estimation and Inference in Tukey Model

I study estimation and inference for the parameters of the Tukey model. Section 4.1 presents

the asymptotic setting used to analyze estimators in the BI framework. Section 4.2 introduces

an estimator for 𝛽0, establishes its consistency, derives its asymptotic distribution, and shows

how it can be used to construct a test for the absence of complementarities. Section 4.3 then

considers the estimation of productivities 𝜶 and 𝝍. While I propose an estimator, I do not study

its properties; instead, I show how its analysis and the limitations it faces connect to those of the

existing productivity estimators in the TWFE model.

4.1 Large Sample in BI Framework

To study the large-sample properties of the estimators introduced below, I consider an asymptotic

setting in which both the number of workers 𝐼 and the number of firms 𝐽 grow large (𝐼 → ∞,
𝐽 → ∞). Information accumulates by adding new nodes to the bipartite graph, rather than by

repeatedly sampling matches along existing edges.

The analysis is hence based on an asymptotic setting in which the network expands. The

sequences of matching networks 𝐺𝐼 𝐽 , worker productivities 𝜶 𝐼 , and firm productivities 𝝍 𝐽 are

taken as deterministic, and the set of observed matches O𝐼 𝐽 is allowed to vary with (𝐼 , 𝐽 ). Ran-
domness arises solely from the error terms {𝜂𝑖 𝑗 }(𝑖, 𝑗)∈O𝐼 𝐽 , which are assumed independent across

matches.

This setup contrasts with stochastic network formation models, where the graph itself is ran-

dom. Instead, the analysis reflects empirical applications in which the observed labor market net-

work is treated as fixed, and inference concerns the role of unobserved shocks given this network

structure. Equivalently, the setting can be viewed as one where the network and productivities

are random, but inference is conducted conditional on their realization.

The role of the matching network in the asymptotic analysis mirrors its role in identification:

conditions on the sequence of graphs 𝐺𝐼 𝐽 ensure the validity of the asymptotic results. These

conditions cannot be verified from a single observed graph. Instead, what matters is how the ob-

served structure relates to the properties required of the asymptotic sequence, to assess whether

the asymptotic results provide a good approximation to the finite-sample behavior.

In labor market applications, the large-𝐼 , large-𝐽 asymptotic setting is well-suited, as available

datasets often include millions of workers and firms. At the same time, the data are sparse: each
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worker is observed with only a handful of firms, and each firm with only a modest number of

workers. For example, in the U.S. labor market over a one-year horizon, a typical worker is

employed by one or two firms, while a typical firm hires only a few dozen workers. To capture

this structure, the asymptotic setting allows node degrees to remain bounded as 𝐼 and 𝐽 grow,

rather than requiring any worker to be linked with many firms or any firm with many workers.

4.2 Interaction Parameter 𝛽0

Recall the Tukey model:

𝑦𝑖 𝑗 = 𝛼𝑖 +𝜓 𝑗 + 𝛽0𝛼𝑖𝜓 𝑗 + 𝜂𝑖 𝑗 ,

with E[𝜂𝑖 𝑗 ] = 0, and {𝜂𝑖 𝑗 }(𝑖, 𝑗)∈O𝐼 𝐽 independent.
This section introduces an estimator for 𝛽0, and analyzes its properties in the large sample

setting described above. Note that, despite Tukey (1949) and the following literature on non-

additivity in ANOVA consider this same model, they do not discuss any estimator for 𝛽0, rather

focusing on directly testing the hypothesis 𝛽0 = 0.

Theorem 1 shows that a single informative four-cycle suffices to identify 𝛽0. In the presence of

noise, however, estimation requires pooling information across many four-cycles present in𝐺𝐼 𝐽 .

It is therefore convenient to treat each four-cycle as an observational unit and impose conditions

on the sequence of matching networks that guarantee the number of distinct four-cycles grows

with 𝐼 and 𝐽 .

4.2.1 Estimator for 𝛽0

Index the four-cycles in 𝐺𝐼 𝐽 by ℓ = 1, . . . , 𝐿. For clarity of exposition, I restrict attention to edge-

disjoint cycles, assuming that no cycles share an edge (but they can share one or two nodes). This

restriction is not essential, and information from overlapping cycles can also be aggregated, but

focusing on edge-disjoint cycles keeps the notation tractable.

Each cycle ℓ consists of two distinct workers {𝑖ℓ , 𝑖′ℓ } and two distinct firms { 𝑗ℓ , 𝑗 ′ℓ }. For ex-
positional purposes, suppose labels are ordered so that 𝛼𝑖ℓ ≥ 𝛼𝑖′ℓ and 𝜓 𝑗ℓ ≥ 𝜓 𝑗 ′ℓ . Of course, these
labels are unknown to the researcher: they only observe the pairs in the cycle, not the underlying

productivities.

To work with the formulas below, the researcher must nonetheless assign distinct labels to

workers and firms in each cycle. At this stage, I leave the rule for assigning labels unspecified;

later, I propose a procedure that uniquely determines them.

Formally, the researcher assigns labels (𝑖ℓ,𝜋ℓ , 𝑖′ℓ,𝜋ℓ ) and ( 𝑗ℓ,𝜋ℓ , 𝑗
′
ℓ,𝜋ℓ
) to the worker and firm pairs
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{𝑖ℓ , 𝑖′ℓ } and { 𝑗ℓ , 𝑗 ′ℓ }. Given this labeling, define

𝜋ℓ := 𝜋𝛼ℓ 𝜋
𝜓

ℓ
,

where

𝜋𝛼ℓ :=


1, if (𝑖ℓ,𝜋ℓ , 𝑖′ℓ,𝜋ℓ ) = (𝑖ℓ , 𝑖

′
ℓ),

−1, if (𝑖ℓ,𝜋ℓ , 𝑖′ℓ,𝜋ℓ ) = (𝑖
′
ℓ , 𝑖ℓ),

𝜋
𝜓

ℓ
:=


1, if ( 𝑗ℓ,𝜋ℓ , 𝑗 ′ℓ,𝜋ℓ ) = ( 𝑗ℓ , 𝑗

′
ℓ),

−1, if ( 𝑗ℓ,𝜋ℓ , 𝑗 ′ℓ,𝜋ℓ ) = ( 𝑗
′
ℓ , 𝑗ℓ).

In words, 𝜋𝛼
ℓ
(𝜋
𝜓

ℓ
) equals 1 when the assigned label 𝑖ℓ,𝜋ℓ ( 𝑗ℓ,𝜋ℓ ) corresponds to the higher-

productivity worker (firm), and −1 otherwise. Because productivities are unobserved, 𝜋ℓ cannot

be directly chosen, but each labeling rule uniquely determines its value. For this reason, I refer

to the label assignment chosen by the researcher simply as 𝜋ℓ .

For each cycle ℓ with labeling 𝜋ℓ , define

Δ̂1,ℓ,𝜋ℓ := 𝑦𝑖ℓ,𝜋ℓ 𝑗ℓ,𝜋ℓ − 𝑦𝑖′ℓ,𝜋ℓ 𝑗ℓ,𝜋ℓ − 𝑦𝑖ℓ,𝜋ℓ 𝑗 ′ℓ,𝜋ℓ + 𝑦𝑖′ℓ,𝜋ℓ 𝑗 ′ℓ,𝜋ℓ ,

Δ̂2,ℓ,𝜋ℓ := 𝑦𝑖ℓ,𝜋ℓ 𝑗ℓ,𝜋ℓ 𝑦𝑖
′
ℓ,𝜋ℓ

𝑗 ′
ℓ,𝜋ℓ
− 𝑦𝑖′

ℓ,𝜋ℓ
𝑗ℓ,𝜋ℓ

𝑦𝑖ℓ,𝜋ℓ 𝑗
′
ℓ,𝜋ℓ
.

Intuitively, Δ̂1,ℓ,𝜋ℓ compares the difference in outcomes betweenworkers across firms, while Δ̂2,ℓ,𝜋ℓ

contrasts two cross-products, each involving all four nodes in the cycle. Both statistics depend

on how workers and firms are labeled within the cycle, as shown by the following example.

Example 1. (Computing Δ̂1,ℓ,𝜋ℓ and Δ̂2,ℓ,𝜋ℓ ). Cycle ℓ includes workers Alice and Bob, and firms
Canon and Dell. Alice earns 120 with Canon and 100 with Dell, while Bob earns 100 with Canon and
90 with Dell.

To compute Δ̂1,ℓ,𝜋ℓ and Δ̂2,ℓ,𝜋ℓ , the researcher must first assign labels (𝑖ℓ,𝜋ℓ , 𝑖′ℓ,𝜋ℓ ) to Alice and Bob,
and ( 𝑗ℓ,𝜋ℓ , 𝑗 ′ℓ,𝜋ℓ ) to Canon and Dell. Each of the four possible assignments induces a value for 𝜋ℓ and
determines the outcomes 𝑦𝑖ℓ,𝜋ℓ 𝑗ℓ,𝜋ℓ , 𝑦𝑖′ℓ,𝜋ℓ 𝑗ℓ,𝜋ℓ , 𝑦𝑖ℓ,𝜋ℓ 𝑗

′
ℓ,𝜋ℓ

, and 𝑦𝑖′
ℓ,𝜋ℓ

𝑗 ′
ℓ,𝜋ℓ

, and thus the corresponding values
of Δ̂1,ℓ,𝜋ℓ and Δ̂2,ℓ,𝜋ℓ . The rows in the following table summarize each assignment:

𝑖ℓ,𝜋ℓ 𝑖′ℓ,𝜋ℓ 𝑗ℓ,𝜋ℓ 𝑗 ′ℓ,𝜋ℓ 𝑦𝑖ℓ,𝜋ℓ 𝑗ℓ,𝜋ℓ 𝑦𝑖′
ℓ,𝜋ℓ

𝑗ℓ,𝜋ℓ
𝑦𝑖ℓ,𝜋ℓ 𝑗

′
ℓ,𝜋ℓ

𝑦𝑖′
ℓ,𝜋ℓ

𝑗 ′
ℓ,𝜋ℓ

Δ̂1,ℓ,𝜋ℓ Δ̂2,ℓ,𝜋ℓ 𝜋ℓ

Alice Bob Canon Dell 120 100 100 90 10 800 1

Alice Bob Dell Canon 100 90 120 100 -10 -800 -1

Bob Alice Canon Dell 100 120 90 100 -10 -800 -1

Bob Alice Dell Canon 90 100 100 120 10 800 1

Although there are four possible labelings, they generate only two distinct pairs (Δ̂1,ℓ,𝜋ℓ , Δ̂2,ℓ,𝜋ℓ ),
corresponding to the two possible values of 𝜋ℓ (which remains unknown to the researcher).
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With these statistics in hand, define the estimator

ˆ𝛽𝐿,𝜋 := −
1

𝐿

∑𝐿
ℓ=1

Δ̂1,ℓ,𝜋ℓ

1

𝐿

∑𝐿
ℓ=1

Δ̂2,ℓ,𝜋ℓ

.

The estimator
ˆ𝛽𝐿,𝜋 does not require estimating 𝜶 or 𝝍. As a result, 𝛽0 can be estimated consis-

tently even when individual productivities cannot be, for example when each worker is observed

only a few times; see Remark 3 for details.

The estimator depends on the labelings (𝜋1, . . . , 𝜋𝐿). In a network with 𝐿 cycles, different la-

beling combinations can generate up to 2
𝐿
distinct estimators of 𝛽0. Such dependence on arbitrary

labeling is undesirable, since two researchers analyzing the same data could obtain different es-

timates solely because they chose different labelings. To remove this ambiguity, I later introduce

a procedure that selects a particular combination of labelings.

To see why
ˆ𝛽𝐿,𝜋 is an estimator for 𝛽0, decompose Δ̂1,ℓ,𝜋ℓ and Δ̂2,ℓ,𝜋ℓ as:

Δ̂1,ℓ,𝜋ℓ = Δ1,ℓ,𝜋ℓ + 𝜖Δ1,ℓ,𝜋ℓ ,

Δ̂2,ℓ,𝜋ℓ = Δ2,ℓ,𝜋ℓ + 𝜖Δ2,ℓ,𝜋ℓ ,

where

Δ1,ℓ,𝜋ℓ = 𝛽0 (𝛼𝑖ℓ − 𝛼𝑖′ℓ ) (𝜓 𝑗ℓ −𝜓 𝑗 ′ℓ ) 𝜋ℓ ,
Δ2,ℓ,𝜋ℓ = −(𝛼𝑖ℓ − 𝛼𝑖′ℓ ) (𝜓 𝑗ℓ −𝜓 𝑗 ′ℓ ) 𝜋ℓ ,

and

𝜖Δ1,ℓ,𝜋ℓ =
(
𝜂𝑖ℓ 𝑗ℓ − 𝜂𝑖′ℓ 𝑗ℓ − 𝜂𝑖ℓ 𝑗 ′ℓ + 𝜂𝑖′ℓ 𝑗 ′ℓ

)
𝜋ℓ , (4.1)

𝜖Δ2,ℓ,𝜋ℓ =
(
𝜃𝑖ℓ 𝑗ℓ𝜂𝑖′ℓ 𝑗

′
ℓ
+ 𝜃𝑖′

ℓ
𝑗 ′
ℓ
𝜂𝑖ℓ 𝑗ℓ − 𝜃𝑖′ℓ 𝑗ℓ𝜂𝑖ℓ 𝑗 ′ℓ − 𝜃𝑖ℓ 𝑗 ′ℓ𝜂𝑖′ℓ 𝑗ℓ + 𝜂𝑖ℓ 𝑗ℓ𝜂𝑖′ℓ 𝑗 ′ℓ − 𝜂𝑖′ℓ 𝑗ℓ𝜂𝑖ℓ 𝑗 ′ℓ

)
𝜋ℓ . (4.2)

Here, the absolute values of Δ1,ℓ,𝜋ℓ and Δ2,ℓ,𝜋ℓ depend only on the model parameters, while

their sign is determined by the labeling 𝜋ℓ . The random terms 𝜖Δ1,ℓ,𝜋ℓ and 𝜖Δ2,ℓ,𝜋ℓ are mean-zero

combinations of the four errors 𝜂𝑖 𝑗 , with their sign again determined solely by 𝜋ℓ . This decompo-

sition highlights why averaging across many cycles reduces sampling variability: the error terms

{𝜂𝑖 𝑗 } are independent and mean zero across edges. Taking the ratio of these averages then can-

cels the common dependence on latent productivities (𝜶 , 𝝍) and on labelings, leaving only the

parameter 𝛽0.

The next section formalizes this intuition and establishes that, under suitable conditions on

the sequence of graphs, error terms, and labelings,
ˆ𝛽𝐿,𝜋 converges almost surely to 𝛽0.
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4.2.2 Consistency

To establish the consistency of
ˆ𝛽𝐿,𝜋 , I require the following conditions.

Assumption 5.

5.1 (Error Regularity) The error terms 𝜂𝑖 𝑗 are independent across all (𝑖, 𝑗) and satisfy E[𝜂𝑖 𝑗 ] = 0,
Var(𝜂𝑖 𝑗 ) ≥ 𝐶𝜂 > 0, and E[|𝜂𝑖 𝑗 | 2+𝛿 ] ≤ 𝑀 < ∞ for some 𝛿 > 0 and uniform bounds 𝐶𝜂 and𝑀 .

5.2 (Cycles Growth) The sequence of matching networks𝐺𝐼 𝐽 is such that, as 𝐼 →∞ and 𝐽 →∞,
𝐿 →∞.

5.3 (Cycles Heterogeneity) The sequences of latent productivities 𝜶 𝐼 and 𝝍 𝐽 , and the sequence of
matching networks 𝐺𝐼 𝐽 are such that

𝜇𝐿 =
1

𝐿

𝐿∑︁
ℓ=1

(𝛼𝑖ℓ − 𝛼𝑖′ℓ ) (𝜓 𝑗ℓ −𝜓 𝑗 ′ℓ )

is bounded away from zero (𝜇𝐿 > 𝐶𝜇 > 0).

5.4 (Labeling Regularity) The sequence of cycle labelings {𝜋ℓ }𝐿ℓ=1
satisfies

𝜇𝐿𝑐𝜋 −
1

𝐿

𝐿∑︁
ℓ=1

(𝛼𝑖ℓ − 𝛼𝑖′ℓ ) (𝜓 𝑗ℓ −𝜓 𝑗 ′ℓ ) 𝜋ℓ
𝑎.𝑠 .−−→ 0,

for some constant 𝑐𝜋 with |𝑐𝜋 | > 𝐶𝜋 > 0. Moreover, the labeling signs {𝜋ℓ } are independent of
the error terms {𝜂𝑖 𝑗 }.

Assumption 5.1 imposes standard regularity conditions on the error terms. Importantly, it

does not require the 𝜂𝑖 𝑗 to be identically distributed and allows for heteroskedasticity: each error

may follow its own distribution, provided it has mean zero, is non-degenerate, and admits (2+𝛿)
moments. While the non-degeneracy and moment conditions are not strictly necessary for con-

sistency, they are needed for deriving the asymptotic distribution of the estimator in subsequent

results.

Assumption 5.2 concerns the sequence of matching networks and requires that the number

of cycles grows with the overall size of the network. The condition does not restrict node degrees

and is compatible with graphs 𝐺𝐼 𝐽 where degrees remain bounded: for example, no worker or

firm needs to appear in more than two matches. Since
ˆ𝛽𝐿,𝜋 treats cycles as the fundamental units

of observation, the assumption guarantees that the number of such units increases sufficiently to

justify asymptotic analysis.
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Assumption 5.3 requires that the average, across cycles, of the products of worker and firm

productivity differences remains bounded away from zero. Since this condition is formulated us-

ing ordered labels, it does not depend on the specific choice of labeling. It is closely related to

Assumption 1, which underlies identification, and guarantees the presence of systematic hetero-

geneity in productivities across cycles. Put differently, because 𝜇𝐿 is an average of nonnegative

terms, requiring 𝜇𝐿 to stay strictly positive implies that a non-vanishing fraction of the summands

must themselves be bounded away from zero. This excludes degenerate cases in which hetero-

geneity vanishes asymptotically, requiring enough variation across workers and firms to make

the cycles informative.

Assumption 5.4 restricts the sequence of labelings. It rules out labeling schemes that drive

the average of Δ2,ℓ,𝜋ℓ toward zero, since in that case both the numerator and denominator of the

estimator would vanish, making 𝛽0 possibly unrecoverable. It also excludes labelings that are sys-

tematically correlated with the error terms, as such dependence would invalidate the averaging

argument underpinning the law of large numbers. The assumption does not prescribe a unique

labeling rule; rather, it specifies the conditions that any labeling must satisfy to be admissible,

allowing for both deterministic and stochastic labeling rules. In Section 4.2.4, I present one such

rule, based on observable instruments, which ensures the condition and provides a practically

implementable estimator.

Strong consistency of
ˆ𝛽𝐿,𝜋 for 𝛽0 then follows from the strong law of large numbers, as stated

in the following theorem.

Theorem 5. (Strong Consistency) Under Assumption 5, as 𝐼 →∞ and 𝐽 →∞, the estimator ˆ𝛽𝐿,𝜋

is strongly consistent for 𝛽0, i.e., ˆ𝛽𝐿,𝜋 →𝑎.𝑠 . 𝛽0.

The assumptions on 𝐺𝐼 𝐽 required for consistency of
ˆ𝛽𝐿 are relatively weak. For instance,

under the bipartite Erdős–Rényi random graph model, Assumption 5.2 holds whenever the link

probability 𝑝𝐼 𝐽 satisfies
√
𝐼 𝐽𝑝𝐼 𝐽 → ∞ (see Appendix D for the formal definition of the model

and the derivation of this threshold). By contrast, ensuring that the graph is connected requires

the stronger condition

√
𝐼 𝐽𝑝𝐼 𝐽

log(
√
𝐼 𝐽 ) > 1. Hence, under the Erdős–Rényi model, the condition on the

matching network needed for identification of𝜶 and 𝝍 automatically guarantees the one required

for consistency of
ˆ𝛽𝐿,𝜋 .

The effective sample size for estimating 𝛽0 is 𝐿, the number of cycles, rather than the number

of observed matches. This parallels other settings in econometrics: in local linear regression, the

effective sample size is proportional to the number of observations times the bandwidth, while

in clustered data it is given by the number of clusters rather than the number of units.

In labormarket applications, Assumption 5.2 is satisfiedwhenever the number of cycles grows

proportionally with the number of workers and firms, even if the graph consists of many discon-

nected local subgraphs. For instance, in the empirical setting of Kline (2024), the data contain
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roughly 750,000 workers, 70,000 firms, and 5,000 cycles: the number of cycles is large enough

that asymptotic approximations are likely to provide a good guide to finite-sample behavior.

The next step is to characterize the asymptotic distribution of
ˆ𝛽𝐿,𝜋 , which provides the basis

for valid inference and for testing the absence of complementarities.

Remark 3. (No Need to Estimate Productivities)A key feature of ˆ𝛽𝐿,𝜋 is that it achieves consistency
without requiring estimation of the productivity components 𝜶 and 𝝍, which would demand many
observations of each worker and firm. This is in contrast to more standard approaches, such as the
iterative least squares procedure of Bai (2009), which estimates 𝛽0 jointly with unit-specific effects.
In that setting, the asymptotic behavior of the estimator for 𝛽0 depends on the properties of the
estimators for 𝜶 and 𝝍. By avoiding their estimation altogether, and directly isolating 𝛽0, the cycle-
based estimator sidesteps this difficulty.

4.2.3 Asymptotic Distribution

The estimator
ˆ𝛽𝐿,𝜋 is a ratio of averages, which makes its asymptotic behavior amenable to anal-

ysis via the Lyapunov Central Limit Theorem. To set up the argument, define

𝑢ℓ,𝜋ℓ := 𝜖Δ1,ℓ,𝜋ℓ + 𝛽0𝜖Δ2,ℓ,𝜋ℓ ,

with 𝜖Δ1,ℓ,𝜋ℓ and 𝜖Δ2,ℓ,𝜋ℓ defined in Equations 4.1 and 4.2. The mean-zero composite error 𝑢ℓ,𝜋ℓ

depends on 𝛽0, the four productivity terms, the labeling, and the four error terms associated with

cycle ℓ .

With this notation in place, the asymptotic distribution of
ˆ𝛽𝐿,𝜋 can be derived.

Theorem 6. (Asymptotic Normality) Under Assumption 5, as 𝐼 →∞ and 𝐽 →∞,
√
𝐿
(

ˆ𝛽𝐿,𝜋 − 𝛽0

)
𝜎𝑢,𝐿
𝜇𝐿𝑐𝜋

𝑑−→ N
(
0, 1

)
,

where 𝜎𝑢,𝐿 :=

√︃
1

𝐿

∑𝐿
ℓ=1

Var(𝑢ℓ,𝜋ℓ ) is the square root of the average variance of the composite errors
{𝑢ℓ,𝜋ℓ } across cycles, and 𝜇𝐿 and 𝑐𝜋 are as defined in Assumptions 5.3 and 5.4.

The estimator
ˆ𝛽𝐿,𝜋 converges at rate

√
𝐿, where 𝐿, the number of cycles, acts as the effective

sample size. In a complete bipartite graph, this corresponds to the rate

√
𝐼 𝐽 , since the edges can

be partitioned into
𝐼
2
× 𝐽

2
edge-disjoint four-cycles. An important implication is that

ˆ𝛽𝐿,𝜋 remains

consistent even when one dimension, either 𝐼 or 𝐽 , is held fixed while the other grows.

In addition to the sample size, three scaling terms appear in the asymptotic distribution. The

first, 𝜎𝑢,𝐿 , is the square root of the average variance of the composite error terms 𝑢ℓ,𝜋 . Although
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these errors depend on the chosen labeling, their variances do not; hence 𝜎𝑢,𝐿 is invariant to

labeling. It reflects only the variability of the underlying noise terms 𝜂𝑖 𝑗 : greater noise in 𝑦𝑖 𝑗

increases 𝜎𝑢,𝐿 and reduces estimator precision.

The second, 𝜇𝐿 , summarizes the heterogeneity in worker and firm productivities across cycles.

If workers and firmswithin cycles are too similar, 𝜇𝐿 is small and the estimator becomes imprecise.

By contrast, stronger heterogeneity makes 𝜇𝐿 larger, yielding sharper estimates.

The third, 𝑐𝜋 , isolates the effect of labeling choice. It shows explicitly how different labeling

rules can affect the variance of the estimator, with some labelings increasing its precision relative

to others.

Feasible Scaling Factor Estimation. To make the asymptotic normality result operational

for inference, the scaling factor
𝜎𝑢,𝐿
𝜇𝐿𝑐𝜋

must be estimated. A consistent estimator is

√︃
𝜎̂2

𝑢,𝐿,𝜋

− 1

𝐿

∑𝐿
ℓ=1

Δ̂2,ℓ,𝜋

,

where − 1

𝐿

∑𝐿
ℓ=1

Δ̂2,ℓ,𝜋 consistently estimates 𝜇𝐿𝑐𝜋 (as established in the consistency proof), and

𝜎̂2

𝑢,𝐿,𝜋
estimates 𝜎2

𝑢,𝐿
. A convenient choice for 𝜎̂2

𝑢,𝐿,𝜋
is the average of the squares of the estimated

residuals 𝑢ℓ,𝜋 :

𝜎̂2

𝑢,𝐿,𝜋
:=

1

𝐿

𝐿∑︁
ℓ=1

𝑢2

ℓ,𝜋 =
1

𝐿

𝐿∑︁
ℓ=1

(
Δ̂1,ℓ,𝜋 + ˆ𝛽𝐿,𝜋 Δ̂2,ℓ,𝜋

)
2

,

whose consistency is established in the following proposition.

Proposition 2. (Consistent Variance Estimator) Under Assumption 5, as 𝐼 → ∞ and 𝐽 → ∞, the
estimator 𝜎̂2

𝑢,𝐿,𝜋
is consistent for 𝜎2

𝑢,𝐿

𝜎̂2

𝑢,𝐿,𝜋 − 𝜎
2

𝑢,𝐿

𝑝
−→ 0.

Theorem 6, together with these feasible estimators for the scaling terms, yields valid asymp-

totic confidence intervals for 𝛽0. The next section introduces a practical procedure for selecting

labelings in each cycle, ensuring Assumption 5.4 holds, uniquely defining the estimator, and guar-

anteeing the validity of inference.

4.2.4 Rank-Based Labeling

Assumption 5.4 restricts how labels can be assigned within each cycle but does not prescribe a

specific rule. In this section, I propose a rank-based procedure for assigning labels (𝑖ℓ,𝜋ℓ , 𝑖′ℓ,𝜋ℓ ) and
( 𝑗ℓ,𝜋ℓ , 𝑗 ′ℓ,𝜋ℓ ) in each cycle, and show that it satisfies Assumption 5.4. As a result, the estimator with

this rank-based labeling is consistent and asymptotically normal, and not dependent on arbitrary

labeling choices.
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Suppose the researcher observes some characteristics of workers and firms, denoted by 𝒛𝜶 =

(𝑧𝛼
1
, . . . , 𝑧𝛼

𝐼
) and 𝒛𝝍 = (𝑧𝜓

1
, . . . , 𝑧

𝜓

𝐽
), and treated as nonrandom. Labels in each cycle are then

assigned using these instruments according to the following rule.

Definition 5. (Rank-Based Labeling) In each cycle ℓ , the labels (𝑖ℓ,𝜋ℓ,𝑧 , 𝑖′ℓ,𝜋ℓ,𝑧 ) and ( 𝑗ℓ,𝜋ℓ,𝑧 , 𝑗
′
ℓ,𝜋ℓ,𝑧
) are

assigned so that

𝑧𝛼𝑖ℓ,𝜋ℓ,𝑧
> 𝑧𝛼

𝑖′
ℓ,𝜋ℓ,𝑧

and 𝑧
𝜓

𝑗ℓ,𝜋ℓ,𝑧
> 𝑧

𝜓

𝑗 ′
ℓ,𝜋ℓ,𝑧

.

Under this rule, the worker and firm with larger instrument values are always labeled 𝑖ℓ,𝜋ℓ,𝑧

and 𝑗ℓ,𝜋ℓ,𝑧 , respectively. This induces the signs

𝜋𝛼ℓ,𝑧 = sign

(
𝑧𝛼𝑖ℓ − 𝑧

𝛼
𝑖′
ℓ

)
, 𝜋

𝜓

ℓ,𝑧
= sign

(
𝑧
𝜓

𝑗ℓ
− 𝑧𝜓

𝑗 ′
ℓ

)
.

For expositional clarity, I exclude the possibility of ties in the instruments; when ties occur, they

can be resolved at random.

Let
ˆ𝛽𝐿,𝑧 denote the Rank-Based Labeling (RBL) estimator, defined using the rank-based label-

ing:

ˆ𝛽𝐿,𝑧 := −
1

𝐿

∑𝐿
ℓ=1

Δ̂1,ℓ,𝜋ℓ,𝑧

1

𝐿

∑𝐿
ℓ=1

Δ̂2,ℓ,𝜋ℓ,𝑧

. (RBL estimator)

The properties of
ˆ𝛽𝐿,𝑧 depend on the choice of instruments 𝒛𝛼 and 𝒛𝜓 .

Consider first the oracle case in which the instruments available to the researcher coincide

exactly with the latent productivities 𝜶 and 𝝍. In this case, the induced labelings satisfy 𝜋ℓ,𝑧 = 1

for all ℓ , so that Assumption 5.4 holds with 𝑐𝜋 = 1. Such oracle instruments are, of course,

infeasible in practice, but Assumption 5.4 does not require 𝑐𝜋 = 1, just that it remains bounded

away from zero. Intuitively, this occurs whenever the instruments correctly rank the higher-

productivity worker and firm more often than not.

In applications, instruments should therefore be observable characteristics plausibly associ-

ated with latent productivities. For instance, years of schooling and firm size can serve as instru-

ments for 𝜶 and 𝝍, as they are often strongly correlated with worker and firm productivity. By

contrast, outcomes themselves, though mechanically related to productivities, violate the exo-

geneity requirement, since they also depend on the error terms {𝜂𝑖 𝑗 }. This means that, as shown

in Appendix E, using outcomes as instruments leads to biased estimates and invalid inference.

The next example provides a practical illustration of how labels are assigned.

Example 2. (Rank-Based Labeling in Practice). Consider two cycles. The first involves workers
Alice and Bob and firms Canon and Dell; the second involves workers Elizabeth and Fred and firms
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General Motors and Honda. To assign labels in each cycle, use years of schooling as an instrument
for workers, and the number of employees as an instrument for firms. The instrument values are:

Worker 𝑧𝛼
𝑖

Alice 16

Bob 14

Elizabeth 18

Fred 12

Firm 𝑧
𝜓

𝑗

Canon 170,000

Dell 110,000

General Motors 160,000

Honda 190,000

Assign labels in each cycle according to the rank-based labeling, so that the worker with higher
schooling receives label 𝑖ℓ,𝜋ℓ,𝑧 and the firm with more employees receives label 𝑗ℓ,𝜋ℓ,𝑧 . The resulting
labels and the corresponding cycle statistics are:

𝑖ℓ,𝜋ℓ,𝑧 𝑖′ℓ,𝜋ℓ,𝑧 𝑗ℓ,𝜋ℓ,𝑧 𝑗 ′ℓ,𝜋ℓ,𝑧 𝑧𝛼
𝑖ℓ,𝜋ℓ,𝑧

𝑧𝛼
𝑖′
ℓ,𝜋ℓ,𝑧

𝑧
𝜓

𝑗ℓ,𝜋ℓ,𝑧
𝑧
𝜓

𝑗 ′
ℓ,𝜋ℓ,𝑧

Δ̂1,ℓ,𝜋ℓ,𝑧 Δ̂2,ℓ,𝜋ℓ,𝑧

Alice Bob Canon Dell 16 14 170k 110k 10 800

Elizabeth Fred Honda General Motors 18 12 190k 160k 20 900

This table, where each row represents a distinct cycle, is the analysis dataset: the estimator ˆ𝛽𝐿,𝑧

is the ratio of the averages of the last two columns.

To formalize the conditions that instruments must satisfy in addition to exogeneity, define

the averages

𝜋𝛼 :=
1

𝐿

𝐿∑︁
ℓ=1

𝜋𝛼ℓ,𝑧, 𝜋𝜓 :=
1

𝐿

𝐿∑︁
ℓ=1

𝜋
𝜓

ℓ,𝑧
, 𝜋𝛼𝜋𝜓 :=

1

𝐿

𝐿∑︁
ℓ=1

𝜋𝛼ℓ,𝑧𝜋
𝜓

ℓ,𝑧
,

and impose the following conditions on the sequences {𝜋𝛼
ℓ,𝑧
} and {𝜋𝜓

ℓ,𝑧
}.

Assumption 6.

6.1 (Relevance) Instruments correctly rank workers and firms sufficiently often: there exist con-
stants 𝑐𝛼 , 𝑐𝜓 > 0 such that, for all sufficiently large 𝐿,

𝜋𝛼 ≥ 𝑐𝛼 , 𝜋𝜓 ≥ 𝑐𝜓 .

6.2 (No Negative Association)Worker and firm instruments are not systematically opposed:

1

𝐿

𝐿∑︁
ℓ=1

(𝜋𝛼ℓ,𝑧 − 𝜋𝛼 ) (𝜋
𝜓

ℓ,𝑧
− 𝜋𝜓 ) ≥ 0.
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6.3 (No Large Gap Penalty) Instrument ranks are not systematically misaligned with the magni-
tude of productivity differences:

1

𝐿

𝐿∑︁
ℓ=1

(
(𝛼𝑖ℓ − 𝛼𝑖′ℓ ) (𝜓 𝑗ℓ −𝜓 𝑗 ′ℓ ) − 𝜇𝐿

) (
𝜋𝛼ℓ,𝑧𝜋

𝜓

ℓ,𝑧
− 𝜋𝛼𝜋𝜓

)
≥ 0.

Assumption 6.1 requires that the instruments contain useful information about the latent

productivities: the rankings they induce must align with the true rankings often enough. Perfect

accuracy is not necessary, and occasional misorderings are allowed, as long as the instruments

select the correct ordering in a sufficiently large fraction of cycles.

Assumption 6.2 rules out a systematic negative association between worker-side and firm-

side labelings. That is, it excludes the case in which the worker instrument tends to misorder

exactly when the firm instrument orders correctly (or vice versa). The restriction applies only on

average: isolated instances of such behavior are admissible provided they do not dominate.

Assumption 6.3 prevents a systematic association between large productivity gaps and mis-

labeling. Specifically, it rules out the possibility that cycles with large differences in worker-firm

productivities are disproportionately associated with incorrect rankings. This condition is mild:

in practice, misclassifications are more likely when productivity gaps are small, not when they

are large.

The next proposition establishes that, when the instruments satisfy Assumption 6, the rank-

based labeling 𝜋ℓ,𝑧 satisfies the condition required by Assumption 5.4. Consequently, the RBL

estimator
ˆ𝛽𝐿,𝑧 achieves the asymptotic properties established in Theorems 5 and 6.

Proposition 3. (Rank-Based Labeling Validity) Under Assumptions 5.1, 5.2, 5.3, and 6, the rank-
based labeling 𝜋ℓ,𝑧 satisfies Assumption 5.4.

Proposition 3 ensures that the rank-based labeling delivers a well-defined estimator
ˆ𝛽𝐿,𝑧 with

the aforementioned asymptotic properties. This result allows
ˆ𝛽𝐿,𝑧 to serve not only as an esti-

mator of the interaction parameter but also as the basis for the construction of a formal test for

the absence of complementarities and hence for modularity of the interaction function in the BI

framework. The next section develops this test and studies its properties.

4.2.5 Test for Absence of Complementarities

The TWFE model is nested within the Tukey model as the special case 𝛽0 = 0. Hence, the asymp-

totic distribution of the RBL estimator
ˆ𝛽𝐿,𝑧 can be used to test the null hypothesis 𝐻0 : 𝛽0 = 0.

Rejecting 𝐻0 not only rejects the TWFE specification, but also rejects modularity of the interac-

tion function 𝑓 , since any modular function can be written in the additive form assumed by the
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TWFE model (see Appendix A). To the best of my knowledge, no formal test of modularity has

previously been available in the BI framework, even though empirical discussions often revolve

around whether complementarities are present.

Testing 𝐻0 : 𝛽0 = 0 is the central focus of Tukey (1949), although no estimator for 𝛽0 is

proposed there. Relying on restrictive assumptions (homoskedastic normally distributed errors

𝜂𝑖 𝑗 and complete matching network𝐺𝐼 𝐽 ), Tukey’s procedure first estimates the additive effects 𝜶

and 𝝍 under the null through two-way fixed effects regression, and then test whether including

the interaction term 𝛼𝑖𝜓 𝑗 significantly improves model fit, for example through regression-based

tests or changes in 𝑅2
.

Similar heuristic approaches have been adopted in the TWFE literature (e.g., Card et al. (2013);

Fenizia (2022)), but the sparsity of thematching network𝐺𝐼 𝐽 makes consistent estimation of𝜶 and

𝝍 infeasible, so that any procedure based on regression residuals seem to be justifiable only under

strong assumptions on the error terms and the matching network. By contrast, the estimator
ˆ𝛽𝐿,𝜋

remains consistent even under heteroskedasticity and in sparse matching structures.

Test Statistic. Consider the t-statistic

𝑇𝐿,𝑧 :=

√
𝐿

1

𝐿

∑𝐿
ℓ=1

Δ̂1,ℓ,𝜋ℓ,𝑧

1

𝐿

∑𝐿
ℓ=1

Δ̂2,ℓ,𝜋ℓ,𝑧

𝜎̂𝑢,𝐿,𝑧
1

𝐿

∑𝐿
ℓ=1

Δ̂2,ℓ,𝜋ℓ,𝑧

=

∑𝐿
ℓ=1

Δ̂1,ℓ,𝜋ℓ,𝑧√︂∑𝐿
ℓ=1

(
Δ̂1,ℓ,𝜋ℓ,𝑧 −

∑𝐿
ℓ=1

Δ̂1,ℓ,𝜋ℓ,𝑧∑𝐿
ℓ=1

Δ̂2,ℓ,𝜋ℓ,𝑧

Δ̂2,ℓ,𝜋ℓ,𝑧

)
2

,

and define the test 𝜙𝐿,𝑧 with size 𝛾 that rejects the null according to

𝜙𝐿,𝑧 (𝑇𝐿,𝑧, 𝛾) = 1
{
|𝑇𝐿,𝑧 | ≥ 𝑐𝛾/2

}
,

where 𝑐𝛾/2 is the 𝛾/2 quantile of the standard normal distribution. The asymptotic validity and

consistency of this test follow directly from the asymptotic normality result in Theorem 6, as

summarized in the following corollary.

Corollary 1. (Test for Modularity) Under Assumptions 5 and 6, as 𝐼 →∞ and 𝐽 →∞, if the inter-
action function 𝑓 is modular, and hence the null hypothesis 𝐻0 : 𝛽0 = 0 is true, the test 𝜙𝐿,𝑧 (𝑇𝐿,𝑧, 𝛾)
is asymptotically valid:

lim

𝐿→∞
E[𝜙𝐿,𝑧 (𝑇𝐿,𝑧, 𝛾)] = 𝛾 .
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Under the Tukey model, when 𝛽0 ≠ 0 and hence the interaction function is not modular, the test is
consistent:

lim

𝐿→∞
E[𝜙𝐿,𝑧 (𝑇𝐿,𝑧, 𝛾)] = 1.

The test 𝜙𝐿,𝑧 controls asymptotic size for any modular function, but Theorem 6 guarantees

its consistency only under correct specification of the Tukey model. In particular, a non-modular

function 𝑓 can admit a representation with 𝛽0 = 0, in which case the test has no power. Thus,

𝜙𝐿,𝑧 tests a necessary but not sufficient condition for modularity. The situation is analogous to

testing independence between two variables using the correlation coefficient: while a nonzero

correlation implies dependence, a correlation of zero does not rule out dependence. In practical

terms, rejection of the null provides strong evidence against modularity, but failure to reject

should be interpreted with caution, as it does not imply that the interaction function is modular.

4.3 Productivities 𝜶 and 𝝍

Theorem 2 shows that, once 𝛽0 is known, connectedness of the matching graph guarantees iden-

tification of 𝜶 and 𝝍. Two cases arise. When 𝛽0 = 0, the model reduces to the standard TWFE

specification, and existing estimators can be applied. I briefly review the available results and

highlight how they rely on strong conditions that are rarely satisfied in labor market data. When

𝛽0 ≠ 0, I propose a method that uses the consistent estimator
ˆ𝛽𝐿,𝜋 as input for estimating the pro-

ductivity parameters. A full analysis of its properties is left for future work. As with the TWFE

model, this approach ultimately requires denser graphs than are typically observed in applica-

tions, reflecting a shared limitation between the two cases.

4.3.1 TWFE model: 𝛽0 = 0

When 𝛽0 = 0, the Tukey model reduces to:

𝑦𝑖 𝑗 = 𝛼𝑖 +𝜓 𝑗 + 𝜂𝑖 𝑗 ,

and the productivity components can be estimated using the TWFE estimator:

(𝜶̂ 𝑡𝑤 𝑓 𝑒, 𝝍̂𝑡𝑤 𝑓 𝑒) = (𝐶′𝐶)−1𝐶′𝒚O,

where the design matrix 𝐶 is defined as in Definition 8.

Jochmans andWeidner (2019) study the asymptotic properties of the TWFE estimator. For in-

ference on a single productivity value, they derive its asymptotic distribution under the condition
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that the degree of the corresponding node diverges. More generally, inference on functionals of

𝜶 and 𝝍 requires that the degrees of many nodes grow. As the authors emphasize, this setting

is far from typical labor market applications, where node degrees usually remain bounded: the

number of workers per firm or firms per worker does not increase proportionally with 𝐼 and 𝐽 .

Kline et al. (2020) also study inference for functionals of the productivities, focusing on quadratic

forms such as variances and covariances. Their asymptotic setting requires thematching network

𝐺𝐼 𝐽 to grow in a uniformly connectedmanner, without fragmenting intoweakly linked subgraphs.

As their Table IV shows, however, this condition is rarely satisfied in labor market data, where

matching networks often exhibit considerable fragmentation.

These results highlight that in most labor market applications, and indeed in other two-sided

settings as well, the network is too sparse to justify asymptotic arguments for productivity es-

timation. This is not surprising: information on individual productivity depends only on the

relatively few edges involving that node, unlike global parameters such as 𝛽0, which influence all

observed matches.

4.3.2 Case with complementarities: 𝛽0 ≠ 0

The estimator
ˆ𝛽𝐿,𝜋 can be used to construct least-squares estimators for 𝜶 and 𝝍 when 𝛽0 ≠ 0.

I outline a simple procedure for doing so, which turns out to involve the same computational

problem as estimating interactive fixed effects.

Starting from the Tukey model in Equation (4.2), multiply both sides by 𝛽0 and add 1:

1 + 𝛽0𝑦𝑖 𝑗 = (1 + 𝛽0𝛼𝑖) (1 + 𝛽0𝜓 𝑗 ) + 𝛽0𝜂𝑖 𝑗 .

Now substitute 𝛽0 with its consistent estimator
ˆ𝛽𝐿,𝜋 and define:

𝑦′𝑖 𝑗 = 1 + ˆ𝛽𝐿,𝜋𝑦𝑖 𝑗 , 𝛼′𝑖 = 1 + ˆ𝛽𝐿,𝜋𝛼𝑖, 𝜓 ′𝑗 = 1 + ˆ𝛽𝐿,𝜋𝜓 𝑗 , 𝜂′𝑖 𝑗 =
ˆ𝛽𝐿,𝜋𝜂𝑖 𝑗 .

From these transformed variables, estimates for the original productivity terms can be recovered

from estimates of 𝜶 ′ and 𝝍′. Since

𝑦′𝑖 𝑗 = 𝛼
′
𝑖𝜓
′
𝑗 + 𝜂′𝑖 𝑗 ,

a natural approach to estimate 𝜶 ′ and 𝝍′ is to solve the least-squares problem:

(𝜶̂ ′, 𝝍̂′) ∈ arg min

𝜶 ′,𝝍′

∑︁
(𝑖, 𝑗)∈O𝐼 𝐽

(
𝑦′𝑖 𝑗 − 𝛼′𝑖𝜓 ′𝑗

)
2

s.t. ∥𝝍′∥ = 1.

This is the interactive fixed-effects problem, and can be solved via alternating least squares; see
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Appendix F for implementation details.

A full analysis of the statistical properties of the productivity estimators derived from (𝜶̂ ′, 𝝍̂′)
lies beyond the scope of this paper and is left for future research. For this reason, in the next

section, when I illustrate how the Tukey model can be applied in practice, the focus will be on

𝛽0, the new parameter introduced by the Tukey specification, for which I developed an estimator

with formally studied asymptotic properties.

5 Empirical Illustration

In this section, I revisit the application in Limodio (2021)
1
to illustrate how to estimate the in-

teraction parameter in the Tukey model and how the resulting estimates can be used to draw

additional insights about the two-sided interaction.

Limodio (2021) studies the interaction betweenmanagers and tasks in the public sector, focus-

ing on the allocation of World Bank bureaucrats (hereafter, managers) to development projects in

low- and middle-income countries. Each manager is responsible for designing, supervising, and

overseeing project implementation. Project success is measured using ratings from the World

Bank’s Independent Evaluation Group, which assess the extent to which key objectives were

achieved. In the original analysis, project success is modeled as a function of a manager-specific

ability 𝛼𝑖 and a country-specific characteristic 𝜓 𝑗 , using the TWFE model. An administrative

dataset records manager-country assignments over time, along with project-level characteristics

and evaluations, making it possible to construct the matching network and observe the outcome

corresponding to each edge.

The combination of assignment data and standardized performance evaluations provides an

ideal setting to study the structure and consequences of bureaucrat-task matching in an inter-

national organization. The main result in Limodio (2021) is the presence of negative sorting:

high-performing managers are disproportionately allocated to low-performing countries. Possi-

ble explanations include the Bank’s strategic objective of assigning stronger managers to weaker

countries, internal career incentives and promotion dynamics, the demand for specialized skills in

more difficult environments, and reallocations following adverse shocks such as natural disasters.

For this illustration, I focus on a version of the model without controls. This differs from the

main specification in Limodio (2021), which includes year and sector fixed effects in the two-way

fixed effects regression. The discussion here should therefore be viewed purely as an application

of the methods developed in this paper, not as a critique of or challenge to their findings. Those

results rely on additional assumptions that are not addressed in the following analysis.

The data contain 3,385 projects, corresponding to 1,876 distinct manager-country pairs. When

1
The data used for this illustration exercise are publicly available on the author’s website.
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the same match 𝑦𝑖 𝑗 is observed multiple times, I use the average outcome. The resulting match-

ing network consists of 697 manager nodes, 127 country nodes, and 1,876 edges. Within this

graph, there are 228 edge-distinct four-cycles, involving 369 managers and 114 countries. Thus,

the information effectively used to estimate the Tukey interaction parameter comes from approx-

imately half of the edges and managers, and from about 90% of the countries.

I consider the RBL estimator
ˆ𝛽𝐿,𝑧 , which assigns labels in each cycle using auxiliary informa-

tion on managers and countries. This requires instruments, observable characteristics of man-

agers and countries satisfying Assumption 6. I use the average project size as the instrument for

managers and the Public InfrastructureManagement Index (PIMI) as the instrument for countries.

Limodio (2021) documents that project size, measured by the average loan amount overseen, is

predictive of managerial ability: more capable managers tend to supervise larger loans. Similarly,

the PIMI developed by Dabla-Norris et al. (2012) is predictive of institutional productivity, with

higher-performing countries scoring higher on this index. Assumptions 6.2 and 6.3 hold provided

that the rankings induced by these instruments are not systematically opposed within cycles and

not systematically misaligned when productivity gaps are large. Since such violations would

require counterintuitive patterns, the assumptions appear plausible in practice. Using average

loan size for managers and the PIMI for countries, therefore, offers a feasible way to implement

Assumption 5.4.

Figure 6 reports the value of the RBL estimator, together with the corresponding confidence

interval for nominal coverage of 0.9. The estimate is negative, indicating negative complemen-

tarities between managers and countries: the relative contribution of a high-ability manager,

compared to a lower-ability one, is greater when working in a lower-productivity country. The

magnitude of the estimate (0.196) can be interpreted as the ratio of the multiplicative to the addi-

tive component. This suggests that, while smaller in importance than additive effects, the multi-

plicative part of the interaction function still plays a meaningful role.

Random
Labeling

Rank−Based
Labeling

−0.8 −0.6 −0.4 −0.2 0.0

Figure 6: Estimates for the Tukey model. The confidence interval is constructed to correctly cover 𝛽0 with

probability 0.9.

The confidence interval (−0.293,−0.099), centered around
ˆ𝛽𝐿,𝑧 , does not include zero. The

p-value for the null 𝛽0 = 0 equals 0.001, providing strong evidence against the absence of com-

plementarities in this interaction.
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To underscore the importance of label choice, the figure also reports estimates obtained under

random labeling. These are presented only to illustrate how reliance on uninformed labels affects

the estimator and should not be interpreted as informative about the underlying interaction.

As expected, random labeling inflates the variance, producing confidence intervals nearly four

times wider than those based on rank-based labeling. In this case, the p-value of 0.126 would fail

to reject the null of no complementarities, highlighting how proper labeling is crucial for test

power, a theme further explored in the Monte Carlo simulations in the next section.

Figure 6 shows the estimate for a single random labeling, but many such estimates can be

computed. Figure 7 plots the distributions of
ˆ𝛽𝐿,𝜋 and of 𝜇𝜋 (the estimator of 𝜇𝐿𝑐𝜋 , the scaling

factor in the asymptotic distribution) across 50,000 random labels assignments, with the values

obtained under rank-based labeling highlighted in red.

0.0

0.1

0.2

0.3

0.4

−1.5 −1.0 −0.5 0.0 0.5 1.0

β̂L,π

F
re

qu
en

cy

0.00

0.03

0.06

0.09

−2 −1 0 1 2

µ̂π

F
re

qu
en

cy

Figure 7: Empirical distribution of
ˆ𝛽𝐿,𝜋 and 𝜇𝜋 . For the distribution of

ˆ𝛽𝐿,𝜋 , to make the histogram infor-

mative, I excluded 2.8% of observations out of (−1.5, 1). For reference, the minimum and the maximum

values I obtained are -413.589 and 1543.647.

The distribution of
ˆ𝛽𝐿,𝜋 shows that most labelings yield negative estimates, though with some

variation in magnitude. The distribution of 𝜇𝜋 , symmetric around zero, indicates that the instru-

ments are informative about the underlying characteristics: the rank-based labeling produces an

estimate of 𝜇𝜋 larger in absolute value than about 80% of random labelings. At the same time, in

20% of cases random labeling delivers even larger values, reflecting that, as expected, the instru-

ments capture only part of the variation in latent rankings.

Figures 6 and 7 thus highlight the importance of selecting labels correctly. The analogy with

instrumental variables is direct: valid instruments must be informative about the latent charac-

teristics, not mere noise, in order to deliver consistent and precise estimates.
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The negative estimate, statistically different from zero, implies that the skills of high-ability

managers matter most in low-productivity countries, where managerial capacity has a greater

marginal impact. This explanation was already suggested by Limodio (2021), but could not be

formally assessed under the modularity restriction of the TWFE model. In this view, assigning

high-performing bureaucrats to low-performing countries is efficient and raises average project

success.

Overall, the empirical illustration shows that the Tukey model is straightforward to imple-

ment and provides insights into the structure of interactions that the TWFE model, by construc-

tion, rules out. The exercise also underscores the practical relevance of Assumption 5.4: only

when instruments induce informative labelings do the resulting estimates convey reliable evi-

dence about complementarities. In the next section, I turn to Monte Carlo simulations to evaluate

how these insights carry over to controlled settings and to study the finite-sample behavior of

the estimator.

6 Monte Carlo Simulations

In this section, I investigate the finite-sample behavior of the estimator
ˆ𝛽𝐿,𝑧 . Because estimation

of 𝛽0 comes entirely from the cycles, I abstract from the rest of the network: I fix a number of

cycles 𝐿 and simulate outcomes only on those cycles. This design lets me isolate how performance

depends on the effective sample size (the number of cycles), the relevance of the instruments, and

the relative magnitude of productivity variation to noise.

Since in simulations the true values of 𝜶 and 𝝍 are known, I can examine the role of the

instruments by directly controlling the labeling within each cycle. Concretely, I set the values

of 𝜋𝛼
ℓ,𝑧

and 𝜋
𝜓

ℓ,𝑧
, which is equivalent to choosing instruments that induce those labelings. This

approach cleanly maps instrument relevance into the labelings that matter for
ˆ𝛽𝐿,𝑧 .

The simulation design proceeds in two steps.

Step 1. Generation of productivities. For each of the 𝐿 cycles, the vector of productivities of

two workers and two firms is drawn from a multivariate normal distribution with mean vector 𝜇

and covariance matrix Σ:

𝜇 = (1, 3, 1, 3), Σ =


1 0 0.5 0.5

0 1 0.5 0.5

0.5 0.5 1 0

0.5 0.5 0 1


.

Labels are then assigned by fixing 𝜋
𝜓

ℓ,𝑧
= 1 and setting 𝜋𝛼

ℓ,𝑧
equal to 1 with probability 𝑝 ≥ 0.5
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and to −1 with probability 1−𝑝 . This corresponds to using different instruments for 𝜶 : the larger

the value of 𝑝 , the stronger the instrument. Equivalently, the same exercise could be conducted

using instruments for 𝝍 or for both sides simultaneously.

Step 2. Generation of outcomes. In each Monte Carlo replication, the four error terms for

every cycle are drawn independently from a normal distribution with mean zero and variance

𝜎2

𝑖 𝑗 . Combined with 𝛽0, these errors generate the 4𝐿 outcomes, which form the simulated data

observed in that replication.

I explore the finite-sample properties of the estimator by varying the number of cycles 𝐿, the

error variance 𝜎𝑖 𝑗 , and the relevance of the instrument 𝑝:

𝐿 ∈ {100, 500, 1000, 5000}, 𝜎𝑖 𝑗 ∈ {0.5, 1, 2}, 𝑝 ∈ {1, 0.85, 0.65, 0.5}.

These choices allow me to examine the role of the assumptions in Theorems 5 and 6, which

require 𝐿 to be large, 𝜎𝑖 𝑗 to remain bounded, and 𝑝 ≠ 0.5. The case 𝑝 = 0.5 corresponds to

non-informative labels, where 𝑐𝜋 = 2𝑝 − 1 = 0 and Assumption 5.4 fails.

For each parameter combination, Step 1 is implemented once, while Step 2 is repeated 10,000

times. Fixing productivities, their labels, and their allocation in cycles across replications mimics

the identification and inference analysis, where 𝜶 , 𝝍,𝐺𝐼 𝐽 , 𝒛𝜶 , and 𝒛𝝍 are treated as deterministic.

Table 1 reports the mean squared errors of
ˆ𝛽𝐿,𝜋 as an estimator of 𝛽0 across simulations.

Table 2 presents the average widths of the corresponding 90% confidence intervals, while Table 3

displays the rejection rates of the test for absence of complementarities under the null hypothesis

𝐻0 : 𝛽0 = 0, for 𝛽0 ∈ {0, 1} and nominal significance level 𝛾 = 0.1.

Mean squared errors

𝑝

𝜎𝑖 𝑗 𝐿 1 0.85 0.65 0.5

0.5 100 0.0004 0.001 0.068 104.760

0.5 500 0.0001 0.0003 0.001 209.599

0.5 1000 0.0001 0.0001 0.001 202.407

0.5 5000 0 0 0.0001 16.723

1 100 0.002 0.470 9.173 225.307

1 500 0.0005 0.001 30.133 15.068

1 1000 0.0002 0.0005 0.005 371.678

1 5000 0 0.0001 0.0005 390.308

2 100 0.348 53.365 586.414 371.702

2 500 0.003 0.018 229.784 101.623

2 1000 0.001 0.002 5.009 165.683

2 5000 0.0002 0.0003 0.003 633.327

Table 1: Mean squared error across different values of 𝜎𝑖 𝑗 , 𝐿, and 𝑝 under 𝛽 = 0.
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Average confidence interval width

𝑝

𝜎𝑖 𝑗 𝐿 1 0.85 0.65 0.5

0.5 100 0.070 0.110 0.890 2330.210

0.5 500 0.030 0.060 0.100 8171.620

0.5 1000 0.020 0.030 0.080 5022.450

0.5 5000 0.010 0.020 0.040 342.600

1 100 0.150 2.740 84.360 9941.750

1 500 0.070 0.110 553.890 203.280

1 1000 0.050 0.080 0.200 5879.220

1 5000 0.020 0.030 0.080 16986.770

2 100 2.980 730.570 15752.510 7345.480

2 500 0.160 0.310 2214.970 2782.270

2 1000 0.100 0.150 34.490 3163.600

2 5000 0.040 0.060 0.160 11696.520

Table 2: Average width of confidence intervals across different values of 𝜎𝑖 𝑗 , 𝐿, and 𝑝 under 𝛽 = 0, for a

nominal coverage of 0.9.

When 𝑝 > 0.5, and hence Assumption 5.4 holds, the mean squared error, the width of the

confidence intervals, and the discrepancy between nominal and empirical size all increase with

the error variance and decrease with the sample size. By contrast, the power of the test rises with

sample size and falls as noise grows. These patterns are consistent with theoretical predictions.

The more interesting patterns concern the role of 𝑝 , which captures the relevance of the

instrument. When Assumption 5.4 is violated (𝑝 = 0.5), the estimator becomes inconsistent and

the asymptotic distribution no longer applies. In this case, the mean squared error does not

shrink with sample size, the test fails to control size under the null, and it is inconsistent against

the alternative, regardless of sample size or error variance.

When the assumption holds but 𝑐𝜋 is small (that is, when 𝑝 > 0.5 but close to 0.5), finite-

sample performance deteriorates, especially when 𝐿 is small and 𝜎𝑖 𝑗 is large. The simulations

confirm that a small 𝑐𝜋 inflates the estimator’s variance, producing large mean squared errors

and wide confidence intervals. This effect is most pronounced when 𝑝 is small relative to 𝐿. In

such cases, the test for absence of complementarities continues to control size reasonably well,

but its power drops sharply, as the inflated variance reduces the ability to reject the null when

it is false. This mirrors the empirical illustration, where the null hypothesis 𝛽0 = 0 was rejected

under rank-based labeling but not under random labeling.

Overall, the simulations reinforce the theoretical results and highlight the central role of la-

beling within cycles: appropriate label selection is crucial not only for estimator precision, but

also for ensuring that the test for the absence of complementarities retains meaningful power.
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Rejection rate under 𝐻0 Rejection rate under 𝐻1

𝑝 𝑝

𝜎𝑖 𝑗 𝐿 1 0.85 0.65 0.5 1 0.85 0.65 0.5

0.5 100 0.098 0.077 0.084 0.046 0.983 0.895 0.020 0

0.5 500 0.102 0.097 0.080 0.028 1 1 0.909 0

0.5 1000 0.102 0.098 0.076 0.040 1 1 0.995 0

0.5 5000 0.105 0.100 0.102 0.069 1 1 1 0

1 100 0.093 0.109 0.113 0.112 0.572 0.409 0.071 0

1 500 0.091 0.085 0.118 0.139 0.997 0.916 0.267 0

1 1000 0.094 0.090 0.093 0.132 1 0.997 0.650 0

1 5000 0.099 0.100 0.089 0.122 1 1 0.994 0

2 100 0.116 0.133 0.189 0.192 0.173 0.086 0.014 0.005

2 500 0.094 0.102 0.143 0.188 0.695 0.482 0.078 0.002

2 1000 0.088 0.086 0.116 0.168 0.930 0.681 0.179 0.002

2 5000 0.093 0.097 0.092 0.187 1 1 0.608 0.024

Table 3: Rejection rates across different values of 𝜎𝑖 𝑗 , 𝐿, and 𝑝 for the null hypothesis 𝐻0 : 𝛽0 = 0,

considering tests with nominal level 𝛾 = 0.9. In the right part of the table, simulations consider a true

𝛽0 = 1.

7 Conclusion

This paper introduced the Bipartite Interaction (BI) framework for modeling two-sided interac-

tions. Within this framework, I proposed notions of identification and large-sample, and studied

three models defined by different restrictions on the interaction function, deriving conditions

for their identification. The analysis highlighted a fundamental trade-off between flexibility in

the interaction function and the density of the matching network: richer interaction structures

require stronger graph conditions to achieve point identification.

Among the models, the Tukey specification emerged as a particularly useful case. By summa-

rizing complementarities with a single parameter, it extends the TWFE model in a parsimonious

yet interpretable way, and for identification it requires only mild additional conditions beyond

those of the TWFE model. I developed a novel cycle-based estimator for its interaction param-

eter, which avoids estimating latent productivities, is consistent under bounded-degree graphs,

and is asymptotically normal. Its asymptotic distribution also provides the basis for a formal

test of the absence of complementarities. An empirical illustration showed that the Tukey model

can be implemented in settings where the TWFE model is standard, delivering richer insights

into the interaction process that would remain hidden under additively separable models. More

broadly, the results demonstrate that complementarities matter in practice and can be studied

with feasible methods.

Two directions for future research remain open. First, while the analysis here focused on
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point identification, extending the BI framework to partial identification would be valuable. For

the BLMand seriationmodels, evenwhen point identification fails, the datamay still deliver infor-

mative bounds. Characterizing identified sets and developing computational methods to recover

them could lead to more credible conclusions without strong parametric assumptions. Second,

while in this paper the main focus was on estimation of 𝛽0 in the Tukey model, researchers are

often interested also in estimating the productivity parameters 𝜶 and 𝝍. I outlined some estima-

tors, but a full analysis of their properties is needed to assess when they yield reliable measures

of worker and firm productivities. The BI framework, by clarifying the distinct roles of the in-

teraction function and the matching network, provides a natural foundation for these further

investigations.
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A Model Characterization via Shape Restrictions

This Appendix shows how the TWFE, Tukey, and BLM models introduced in Section 2 can be

obtained from shape restrictions imposed directly on the interaction function 𝑓 . In particular, I

demonstrate that imposing certain shape restrictions leads to representations that are observa-

tionally equivalent to each of these three models: once the restrictions are in place, 𝑓 can, up to a

relabeling, be expressed in the form of the TWFE, Tukey, or BLM specification. For the seriation

model, the connection with monotonicity of 𝑓 was already made explicit in its definition, and is

therefore not revisited here.

These equivalence results clarify the structural assumptions implicitly embedded in the mod-

els, which are often interpreted only as reduced-form specifications. The remainder of this Ap-

pendix is organized as follows. Section A.1 shows how modularity leads to the TWFE model;

Section A.2 establishes the connection between bilinearity and the Tukey model; and Section A.3

links a diagonal bilinear structure to the BLM model.

A.1 Modularity and TWFE model

Recall the definition of modularity (see Topkis (1998) for an extensive discussion).

Definition 6. (Supermodularity, Submodularity, Modularity) A function 𝑓 : R×R→ R is super-
modular (submodular) if, for any quadruple (𝑖, 𝑖′, 𝑗, 𝑗 ′) such that 𝛼𝑖 > 𝛼𝑖′ and𝜓 𝑗 > 𝜓 𝑗 ′ ,

𝑓 (𝛼𝑖,𝜓 𝑗 ) − 𝑓 (𝛼𝑖,𝜓 𝑗 ′) ≥ (≤) 𝑓 (𝛼𝑖′,𝜓 𝑗 ) − 𝑓 (𝛼𝑖′,𝜓 𝑗 ′).

A function 𝑓 is modular if it is both supermodular and submodular.

If 𝑓 is twice continuously differentiable, supermodularity (submodularity) is equivalent to

𝜕2𝑓 /𝜕𝛼 𝜕𝜓 ≥ 0 (≤ 0), and modularity to 𝜕2𝑓 /𝜕𝛼 𝜕𝜓 = 0 everywhere.

The next proposition formalizes the observational equivalence between a modular 𝑓 and the

TWFE model specification.

Proposition 4. (Modularity and TWFE model) Any model (𝑓 ,𝜶 , 𝝍,𝐺𝐼 𝐽 ) with 𝑓 : R × R → R

modular is observationally equivalent to the TWFE model.

Proof. For functions defined on product spaces, modularity is equivalent to additive separability.

Thus, any modular 𝑓 can be written as 𝑓 (𝛼𝑖,𝜓 𝑗 ) = 𝑔𝛼 (𝛼𝑖) +𝑔𝜓 (𝜓 𝑗 ) for some functions 𝑔𝛼 : 𝐴→ R

and𝑔𝜓 : Ψ→ R. Let 𝛼′𝑖 := 𝑔𝛼 (𝛼𝑖) and𝜓 ′𝑗 := 𝑔𝜓 (𝜓 𝑗 ). Then, it holds that 𝑓 (𝛼𝑖,𝜓 𝑗 ) = 𝑔𝛼 (𝛼𝑖)+𝑔𝜓 (𝜓 𝑗 ) =
𝛼′𝑖 +𝜓 ′𝑗 , and hence (𝑓 ,𝜶 , 𝝍,𝐺𝐼 𝐽 ) and the TWFE model are observationally equivalent. □
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A.2 Bilinearity and Tukey model

Recall the definition of bilinearity (Lang, 1987).

Definition 7. (Bilinearity) A function 𝑓 : 𝑈 ×𝑉 → R is bilinear if, for each fixed 𝑣 ∈ 𝑉 , the map
𝑢 ↦→ 𝑓 (𝑢, 𝑣) is linear in 𝑢, and for each fixed 𝑢 ∈ 𝑈 , the map 𝑣 ↦→ 𝑓 (𝑢, 𝑣) is linear in 𝑣 .

Many panel data methods rely on bilinear interactions between latent fixed effects, whether

scalar or vector. Examples include two-way and group fixed effects, difference-in-differences,

synthetic control, factor models, low-rank approximations, and nuclear-norm regularization (see

Arkhangelsky and Imbens (2024) for a review). Bilinear structures also arise in strategic settings:

in the classic two-player, two-action simultaneous game with risk-neutral agents (Nash Jr, 1950),

expected payoffs are bilinear in the players’ mixed strategies.

In the Bipartite Interaction model, to allow for an intercept while maintaining one scalar

productivity per agent, define the augmented vectors 𝛼𝑣𝑖 := (𝛼𝑖, 1)′ and 𝜓 𝑣𝑗 := (𝜓 𝑗 , 1)′. Say that

𝑓 (𝛼,𝜓 ) admits a bilinear representation if there exists a bilinear function 𝑓 𝑣 such that 𝑓 (𝛼,𝜓 ) =
𝑓 𝑣 (𝛼𝑣 ,𝜓 𝑣 ).

With an additional assumption on the behavior of 𝑓 at the origin, the following proposition

shows that admitting a bilinear representation is observationally equivalent to the Tukey model.

Proposition 5. (Bilinear Representation and Tukey model) Any model (𝑓 ,𝜶 , 𝝍,𝐺𝐼 𝐽 ) in which 𝑓
admits a bilinear representation with 𝛼𝑣𝑖 := (𝛼𝑖, 1)′ and𝜓 𝑣𝑗 := (𝜓 𝑗 , 1)′ and satisfies

𝑓 (𝛼,𝜓 ) = 0 ⇐⇒ 𝛼 = 0 ∧𝜓 = 0,

is observationally equivalent to the Tukey model.

Proof. By Theorem 4.1 in Lang (1987), any bilinear function 𝑓𝑣 can be written

𝑓𝑣 (𝛼𝑣 ,𝜓 𝑣 ) = (𝛼𝑣 )′ 𝐵𝜓 𝑣 , 𝐵 =

(
𝑏00 𝑏01

𝑏10 𝑏11

)
.

Hence,

𝑓 (𝛼,𝜓 ) = 𝑓𝑣 (𝛼𝑣 ,𝜓 𝑣 ) = (𝛼𝑖, 1)𝐵(𝜓 𝑗 , 1)′ = 𝑏00𝛼𝜓 + 𝑏01𝛼 + 𝑏10𝜓 + 𝑏11.

Since 𝑓 (0, 0) = 0, 𝑏11 = 0. Furthermore, since 𝑓 (𝛼,𝜓 ) = 0 only when both 𝛼 and 𝜓 are zero,

𝑏01 ≠ 0 and 𝑏10 ≠ 0. Set

𝛼′ = 𝑏01𝛼, 𝜓 ′ = 𝑏10𝜓, 𝛽0 =
𝑏00

𝑏01𝑏10

,
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and note that 𝑓 (𝛼,𝜓 ) = 𝑏01𝛼 + 𝑏10𝜓 + 𝑏00𝛼𝜓 = 𝛼′ +𝜓 ′ + 𝛽0𝛼
′𝜓 ′, and hence (𝑓 ,𝜶 , 𝝍,𝐺𝐼 𝐽 ) and the

Tukey model are observationally equivalent. □

A.3 Bilinearity and BLM model

Suppose now that each firm is characterized by the productivity vector 𝜓 𝑣𝑗 = (𝑏 𝑗 , 𝑎 𝑗 ). Recall that
a diagonal bilinear form is a bilinear form whose matrix representation is diagonal. Imposing that

𝑓 admits a diagonal bilinear representation is observationally equivalent to the BLM model.

Proposition 6. (Bilinear Representation and BLM model) Any model (𝑓 ,𝜶 , 𝝍,𝐺𝐼 𝐽 ) in which 𝑓
admits a diagonal bilinear representation with 𝛼𝑣𝑖 := (𝛼𝑖, 1)′ and 𝜓 𝑣𝑗 = (𝑏 𝑗 , 𝑎 𝑗 )′ is observationally
equivalent to the BLM model.

Proof. By Theorem 4.1 in Lang (1987), any bilinear function 𝑓𝑣 can be written

𝑓𝑣 (𝛼𝑣 ,𝜓 𝑣 ) = (𝛼𝑣 )′ 𝐵𝜓 𝑣 , 𝐵 =

(
𝑏00 𝑏01

𝑏10 𝑏11

)
.

Since 𝐵 diagonal, 𝑏01 = 𝑏10 = 0, and hence

𝑓 (𝛼,𝜓 ) = 𝑓𝑣 (𝛼𝑣 ,𝜓 𝑣 ) = (𝛼𝑖, 1)𝐵(𝑏 𝑗 , 𝑎 𝑗 )′ = 𝑏00𝛼𝑏 + 𝑏01𝛼𝑎 + 𝑏10𝑏 + 𝑏11𝑎 = 𝑏00𝛼𝑏 + 𝑏11𝑎.

Set

𝛼′ = 𝑏00𝛼, 𝑎′ = 𝑏11𝑎, 𝑏′ = 𝑏

and note that 𝑓 (𝛼,𝜓 ) = 𝑏00𝛼𝑏 + 𝑏11𝑎 = 𝛼′𝑏′ + 𝑎′, and hence (𝑓 ,𝜶 , 𝝍,𝐺𝐼 𝐽 ) and the BLM model are

observationally equivalent. □

B TWFE as Approximation of Tukey

The TWFE model is often interpreted as an approximation, analogous to using the best linear

projection (the linear function of a variable 𝑋 that minimizes mean squared error when approx-

imating another variable 𝑌 ) to summarize the relationship between random variables 𝑋 and 𝑌 .

In this Appendix, I investigate how such an approximation behaves when the true worker-firm

interaction follows the Tukey model.
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Define

𝑛𝑖 =
∑︁
𝑗

𝐷𝑖 𝑗 , 𝑚 𝑗 =
∑︁
𝑖

𝐷𝑖 𝑗 , 𝑛 =
∑︁
𝑖

𝑛𝑖,

where 𝑛 is the total number of matches, 𝑛𝑖 is the degree of worker 𝑖 , and𝑚 𝑗 is the degree of firm

𝑗 . Using this notation, I introduce the two-way fixed effects (TWFE) projections.

Definition 8. (TWFE Projection) Under Assumption 2 and the normalization 𝛼1 = 0, the TWFE
projections (𝜶 𝑡𝑤 𝑓 𝑒, 𝝍𝑡𝑤 𝑓 𝑒) are defined by

(𝜶 𝑡𝑤 𝑓 𝑒, 𝝍𝑡𝑤 𝑓 𝑒) = (𝐶′𝐶)−1𝐶′𝜽O,

where𝐶 ∈ R𝑛×(𝐼+𝐽−1) is the incidence (design)matrix linking the free worker productivities (𝛼2, . . . , 𝛼𝐼 )
and all firm productivities (𝜓1, . . . ,𝜓 𝐽 ) to the observed matches.

Intuitively, (𝜶 𝑡𝑤 𝑓 𝑒, 𝝍𝑡𝑤 𝑓 𝑒) are the coefficients from a TWFE fit in the noiseless model. The

expression in Definition 8 is the ordinary least squares solution, with 𝐶 determined entirely by

the structure of the matching network 𝐺𝐼 𝐽 . Each row of 𝐶 contains one nonzero entry in the

worker block and one in the firm block, encoding the worker-firm pair observed in that match.

The matrix 𝐶′𝐶 has the block form

𝐶′𝐶 =

(
diag(𝑛2, . . . , 𝑛𝐼 ) 𝐷

𝐷𝑇 diag(𝑚1, . . . ,𝑚 𝐽 )

)
where 𝐷 is the incidence block of the adjacency matrix of 𝐺𝐼 𝐽 . This is the signless Laplacian

of 𝐺𝐼 𝐽 , the sum of its degree matrix and adjacency matrix, which captures the full connectivity

structure of the graph.

Under the TWFE model, the TWFE projections (𝜶 𝑡𝑤 𝑓 𝑒, 𝝍𝑡𝑤 𝑓 𝑒) coincide with the true pro-

ductivities (𝜶 , 𝝍). Under alternative interaction functions, however, the presence of 𝐶′𝐶 in the

projection formula implies that the bias depends on the entire structure of𝐺𝐼 𝐽 . In the case of the

Tukey model, this dependence admits a closed-form characterization.

Define the average partner productivities

¯𝜓𝑖 =
1

𝑛𝑖

∑︁
𝑗

𝐷𝑖 𝑗 𝜓 𝑗 , 𝛼 𝑗 =
1

𝑚 𝑗

∑︁
𝑖

𝐷𝑖 𝑗 𝛼𝑖,

where
¯𝜓𝑖 is the average firm productivity for worker 𝑖 and 𝛼 𝑗 is the average worker productivity

for firm 𝑗 .

The next proposition provides the expressions for (𝜶 𝑡𝑤 𝑓 𝑒, 𝝍𝑡𝑤 𝑓 𝑒) under the Tukey model,
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making it possible to examine when the TWFE projection delivers a good approximation to the

true interaction.

Proposition 7. (Misspecified TWFE) Under the Tukey model, the normalization 𝛼1 = 0, and As-
sumption 2, the projections satisfy, for 𝑖 > 1 and all 𝑗 :

𝛼
𝑡𝑤 𝑓 𝑒

𝑖
= 𝛼𝑖 + 𝛽0

(
𝐼∑︁

𝑖′=2

Λ𝑖,𝑖′ 𝑛𝑖′𝛼𝑖′ ¯𝜓𝑖′ +
𝐽∑︁
𝑗 ′=1

Λ𝑖, 𝐼−1+ 𝑗 ′𝑚 𝑗 ′𝜓 𝑗 ′𝛼 𝑗 ′

)
,

𝜓
𝑡𝑤 𝑓 𝑒

𝑗
= 𝜓 𝑗 + 𝛽0

(
𝐼∑︁

𝑖′=2

Λ𝐼−1+ 𝑗, 𝑖′ 𝑛𝑖′𝛼𝑖′ ¯𝜓𝑖′ +
𝐽∑︁
𝑗 ′=1

Λ𝐼−1+ 𝑗, 𝐼−1+ 𝑗 ′𝑚 𝑗 ′𝜓 𝑗 ′𝛼 𝑗 ′

)
,

where Λ𝑢,𝑣 denotes the (𝑢, 𝑣) entry of the inverse of the signless Laplacian of 𝐺𝐼 𝐽 .

Proof. To derive these expressions, rewrite the problem in matrix form and apply the ordinary

least squares formula. Let𝐴 ∈ R𝐼 𝐽×𝐼 and 𝐵 ∈ R𝐼 𝐽×𝐽 denote the worker and firm indicator matrices,

respectively. Each entry 𝐴(𝑖 𝑗), 𝑖 and 𝐵(𝑖 𝑗), 𝑗 equals 1 if the match (𝑖, 𝑗) involves worker 𝑖 or firm 𝑗 ,

and zero otherwise. Let 𝑌 ∈ R𝐼 𝐽×1
stack the 𝜃𝑖 𝑗 values, and let 𝑆 ∈ R𝑛×𝐼 𝐽 be the selection matrix

extracting observed matches, so that 𝜽O = 𝑆𝑌 .

To impose 𝛼1 = 0, drop the first column of 𝐴 and define 𝐶 := [𝑆𝐴−1 𝑆𝐵] ∈ R𝑛×(𝐼+𝐽−1)
, where

𝐴−1 is 𝐴 without its first column. Let 𝑐𝑡𝑤 𝑓 𝑒 := [𝛼𝑡𝑤 𝑓 𝑒
2

, . . . , 𝛼
𝑡𝑤 𝑓 𝑒

𝐼
,𝜓

𝑡𝑤 𝑓 𝑒

1
, . . . ,𝜓

𝑡𝑤 𝑓 𝑒

𝐽
]′. Then

𝑐𝑡𝑤 𝑓 𝑒 = (𝐶′𝐶)−1𝐶′𝑆𝑌 = (𝐶′𝐶)−1𝐶′𝜽O .

Define 𝑎 := 𝑆𝐴𝜶 , 𝑝 := 𝑆𝐵𝝍, and ℎ := 𝑎 ⊙𝑝 , where ⊙ denotes element-wise multiplication. The

systematic part of the outcome satisfies

{𝜃𝑖 𝑗 }(𝑖, 𝑗)∈O𝐼 𝐽 = 𝑆𝑌 = 𝐶𝑐 + 𝛽0ℎ,

and thus the projection becomes

𝑐𝑡𝑤 𝑓 𝑒 = 𝑐 + 𝛽0(𝐶′𝐶)−1𝐶′ℎ,

where 𝛽0(𝐶′𝐶)−1𝐶′ℎ is the bias term.

The matrix 𝐶′𝐶 is the signless Laplacian. To compute 𝐶′ℎ, observe that each row 𝑘 of 𝐶′ has

a 1 in the two positions corresponding to the nodes in match 𝑘 , and zeros elsewhere. Therefore,

𝐶′ℎ is a vector whose first 𝐼 − 1 entries are 𝑛𝑖𝛼𝑖 ¯𝜓𝑖 for 𝑖 = 2, . . . , 𝐼 , and whose next 𝐽 entries are

𝑚 𝑗𝜓 𝑗𝛼 𝑗 for 𝑗 = 1, . . . , 𝐽 . Substituting into the bias formula yields the stated result. □

The matrix Λ, the inverse of the signless Laplacian, can be viewed as a “connectivity influence
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matrix”: the entry Λ𝑢,𝑣 measures how a perturbation in node 𝑣 ’s outcome propagates through the

graph to node 𝑢. Larger values of Λ𝑢,𝑣 indicate that 𝑢 and 𝑣 are more tightly linked, via short

paths, multiple routes, or connections through high-degree nodes, so omitted interaction terms

from node 𝑣 spill over more strongly into node 𝑢’s TWFE projection.

The bias in Proposition 7 is proportional to |𝛽0 |, and vanishes when 𝛽0 = 0. The expressions

𝑛𝑖′𝛼𝑖′ ¯𝜓𝑖′ and𝑚 𝑗 ′𝜓 𝑗 ′𝛼 𝑗 ′ correspond exactly to the interaction components that are omitted when

TWFE is imposed. The weights Λ𝑢,𝑣 , given by the entries of the inverse signless Laplacian, deter-

mine how the structure of𝐺𝐼 𝐽 channels these omitted terms into each node’s projection. Because

Λ depends on the global topology of the graph, the bias for any given worker or firm is shaped

by the structure of the entire network. Closed-form expressions for Λ are available for certain

graph families (Hessert and Mallik, 2021), but no general formula exists.

B.1 Bias Propagation in Sorting Measure

Crucially, the bias term at each node depend not only on 𝛽0 and the corresponding productivity,

but also on the full pattern of observed matches. Two workers 𝑖 and 𝑖′ with identical productiv-

ities, 𝛼𝑖 = 𝛼𝑖′ , may have different projections, 𝛼
𝑡𝑤 𝑓 𝑒

𝑖
and 𝛼

𝑡𝑤 𝑓 𝑒

𝑖′ . In some cases, the ordering may

even reverse: for example, it is possible to have 𝛼𝑖 > 𝛼𝑖′ but 𝛼
𝑡𝑤 𝑓 𝑒

𝑖
< 𝛼

𝑡𝑤 𝑓 𝑒

𝑖′ . This is in contrast

with the balanced panel case, where all worker-firm pairs are observed and projections preserve

the productivity rankings.

The bias expressions show that the projections embed the sorting pattern in the matching

network. Hence, relying on 𝜶 𝑡𝑤 𝑓 𝑒
and 𝝍𝑡𝑤 𝑓 𝑒 to measure sorting can be misleading. A standard

approach is to compute the correlation between 𝛼
𝑡𝑤 𝑓 𝑒

𝑖
and 𝜓

𝑡𝑤 𝑓 𝑒

𝑗
across observed matches: one

constructs two vectors, one with 𝛼
𝑡𝑤 𝑓 𝑒

𝑖
and another with 𝜓

𝑡𝑤 𝑓 𝑒

𝑗
for each observed pair (𝑖, 𝑗), and

then computes their correlation as a summary statistic of sorting. A positive correlation sug-

gests sorting of high-productivity workers with high-productivity firms; a near-zero or negative

correlation implies weak or negative sorting.

Proposition 7 can be used directly to construct cases in which the projections fail to capture

the true sorting pattern. In the example below, I construct a settingwith positive sorting, meaning

that true productivities are positively correlated across matches. Although the true correlation

is sizable (around 0.3), the correlation computed using TWFE projections is close to zero when

the interaction function is supermodular with 𝛽0 = 3. This case is not contrived: the matching

network in Figure 8 is fairly typical, and simple theory predicts supermodularity being associ-

ated with positive sorting. Nonetheless, the TWFE approximation would incorrectly suggest the

absence of sorting.

Example 3. (Sorting Pattern) Consider the matching network with 𝐼 = 3, 𝐽 = 3, and O𝐼 𝐽 =
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{(𝑖1, 𝑗1), (𝑖1, 𝑗2), (𝑖1, 𝑗3), (𝑖2, 𝑗2), (𝑖2, 𝑗3), (𝑖3, 𝑗3)}, as illustrated in Figure 8. Let the productivities be
𝛼1 = 4, 𝛼2 = 5, and 𝛼3 = 2, and𝜓1 = 10,𝜓2 = 8, and𝜓3 = 1.

𝑖1

𝑖2

𝑖3

𝑗1

𝑗2

𝑗3

Figure 8: Left: the matching network in Example 3. Right: the correlation coefficient 𝜌 between worker

and firm TWFE projections across matches as a function of 𝛽0.

Using Proposition 7, compute the projections 𝜶 𝑡𝑤 𝑓 𝑒 and 𝝍𝑡𝑤 𝑓 𝑒 , and let 𝜌 be the correlation of
productivities across matches. Figure 8 shows how 𝜌 varies with 𝛽0: although the true correlation is
0.3 (and is correctly captured when 𝛽0 = 0), the correlation based on the projections can be close to
zero or even negative.

Consider the case 𝛽0 = 3, hence with a supermodular interaction function. The correlation based
on the TWFE projections is only 0.02, with the bias nearly offsetting the underlying sorting pattern.

Bias in the covariance also contaminates the variance decomposition, making its components

difficult to interpret. In addition, because the bias can reverse the true ranking of agents, any two-

stage procedure that relies on TWFE projections as outcome variables in subsequent regressions

becomes unreliable.

Example 3 hence demonstrates that approximating the Tukey model with the TWFE specifi-

cation, even in the noiseless case, produces parameters of limited informational value once com-

plementarities are non-negligible. This underscores the importance of methods that allow 𝑓 to

feature complementarities. The Tukey model provides the minimal extension of TWFE required

to capture them, offering a simple yet flexible structure for analysis.

C Seed-and-Snowballs and Leave-one-out Connectivity

In this Appendix, I examine the relationship between the Seed-and-Snowballs connectivity prop-

erty introduced in Section 3.3 and the leave-one-out connectivity condition used by Kline et al.

(2020) to establish the validity of their variance estimator. The latter requires that the bipartite

graph remain connected after removing any single worker node together with its incident edges.

The precise relationship between these two conditions is stated in the following proposition.
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Proposition 8. (Seed-and-Snowballs vs. Leave-one-out Connectivity) If 𝐺𝐼 𝐽 satisfies Seed-and-
Snowballs connectivity, then it satisfies leave-one-out connectivity; the converse does not hold.

Proof. Seed-and-Snowballs⇒ Leave-one-out. If |𝐽 | = 1 the conclusion is immediate, so assume

there are at least two firms. Run the Seed–and–Snowballs algorithm using a seed 𝑗0 and record

the order in which firms enter the set 𝑆
𝐽
𝑛 ; by construction, each firm 𝑗𝑘 with 𝑘 ≥ 1 is connected

to the preceding firms through at least two distinct workers, say 𝑖
(1)
𝑘

and 𝑖
(2)
𝑘

.

Now, remove an arbitrary worker 𝑖★ together with all incident edges. For every firm 𝑗𝑘 there

are two cases:

1. If 𝑖★ ∉ {𝑖 (1)
𝑘
, 𝑖
(2)
𝑘
}, 𝑗𝑘 keeps both links to the earlier firms.

2. If 𝑖★ coincides with, say, 𝑖
(1)
𝑘

, the second link 𝑖
(2)
𝑘

remains, so 𝑗𝑘 is still connected to the

subgraph generated by { 𝑗0, . . . , 𝑗𝑘−1}.

Proceeding inductively from 𝑘 = 1 to 𝑘 = |𝐽 | − 1 shows that every firm remains connected to

𝑗0 after 𝑖★ is deleted; hence, the whole graph stays connected. Because 𝑖★ was arbitrary, 𝐺𝐼 𝐽 is

leave-one-out connected.

Leave-one-out⇏ Seed-and-Snowballs. Consider the graph in Figure 9. Deleting any single

worker breaks exactly two edges, but the remaining edges still form a path that contains every

node, so the graph is leave-one-out connected. However, starting for example from the seed 𝑗0, the

snowball algorithm proceeds 𝑗0 → {𝑖1, 𝑖2, 𝑖5} → { 𝑗0, 𝑗1} → {𝑖1, 𝑖2, 𝑖5, 𝑖3}; remaining firms share at

most one of these workers, so no further firm can be added and the procedure stops. Because the

same failure occurs for any choice of the seed, Seed-and-Snowballs connectivity does not hold.

𝑗0 𝑗1

𝑗2 𝑗3

𝑖1

𝑖2

𝑖3

𝑖4

𝑖5

𝑖1

𝑖2

𝑖3

𝑖4

𝑖5

𝑗0

𝑗1

𝑗2

𝑗3

Figure 9: Two representation of the same bipartite graph satisfying leave-one-out connectivity and vio-

lating seed-and-snowball connectivity.

□
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D 4-Cycles in Erdős-Rényi Model

In this Appendix, I study the conditions under which the bipartite Erdős-Rényi random graph

model generates, with high probability, a diverging number of length-4 cycles, thereby satisfying

Assumption 5.2. In the Bipartite Interactionmodel, the graph𝐺𝐼 𝐽 is treated as fixed, so the number

of cycles is deterministic. The goal here is not to provide amodel of network formation, but rather

to clarify the role of the “many cycles” assumption and how it relates to connectivity. While

similar insights arise under other random graph models, the Erdős-Rényi model is adopted as a

simple benchmark in which the entire network structure is governed by a single parameter.

In the bipartite Erdős–Rényi graph 𝐺𝐼 𝐽 (𝑝𝐼 𝐽 ), each pair (𝑖, 𝑗) ∈ 𝐼 × 𝐽 is independently linked

with probability 𝑝𝐼 𝐽 ∈ (0, 1). The link probability 𝑝𝐼 𝐽 is constant across edges, but may vary with

network sizes 𝐼 and 𝐽 . Let 𝐶4(𝐼 , 𝐽 ) denote the (random) number of length-4 cycles in 𝐺𝐼 𝐽 (𝑝𝐼 𝐽 ),
and consider a setting in which the ratio

𝐼
𝐽
remains bounded (0 < 𝑐 < 𝐼

𝐽
< 𝑐 < ∞) as 𝐼 , 𝐽 →∞, so

that the numbers of agents on the two sides of the market grow at the same rate. The following

proposition provides a sufficient condition for𝐺𝐼 𝐽 (𝑝𝐼 𝐽 ) to contain a diverging number of length-4

cycles.

Proposition 9. (Cycles in Erdős-Rényi Model) If 𝐼𝑝𝐼 𝐽 →∞, then 𝐶4(𝐼 , 𝐽 )
𝑝
−→ ∞.

Proof. Let Iℓ be the indicator that the quartet ℓ = (𝑖, 𝑖′, 𝑗, 𝑗 ′), with 𝑖, 𝑖′ ∈ 𝐼 and 𝑗, 𝑗 ′ ∈ 𝐽 , forms a

cycle, and let L denote the set of all potential quartets. The number of length-4 cycles𝐶4(𝐼 , 𝐽 ) is
then given by

𝐶4(𝐼 , 𝐽 ) =
∑︁
ℓ∈L
Iℓ .

Since there are

(𝐼
2

) (𝐽
2

)
=

𝐼 (𝐼−1) 𝐽 (𝐽−1)
4

potential cycles, and each occurs with probability 𝑝4

𝐼 𝐽
,

E[𝐶4(𝐼 , 𝐽 )] =
𝐼 (𝐼 − 1) 𝐽 (𝐽 − 1)

4

𝑝4

𝐼 𝐽 .

Consider the variance of 𝐶4(𝐼 , 𝐽 ):

Var(𝐶4(𝐼 , 𝐽 )) = Var

(∑︁
ℓ∈L
Iℓ

)
=

∑︁
ℓ∈L

Var(Iℓ) +
∑︁
ℓ≠ℓ ′

Cov(Iℓ ,Iℓ ′),

and since I2

ℓ = Iℓ ,∑︁
ℓ

Var(Iℓ) =
∑︁
ℓ

𝑝4

𝐼 𝐽 (1 − 𝑝
4

𝐼 𝐽 ) =
𝐼 (𝐼 − 1) 𝐽 (𝐽 − 1)

4

𝑝4

𝐼 𝐽 (1 − 𝑝
4

𝐼 𝐽 ),
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which gives a term of order 𝑂 (𝐼 4𝑝4

𝐼 𝐽
), where 𝐽 is replaced by 𝐼 since both grow at the same rate.

For two distinct cycles, let 𝑘 ∈ {0, 1, 2} be the number of shared edges. If 𝑘 = 0, the indicators

are independent, so the covariance is zero.

If 𝑘 = 1, the two cycles share exactly one edge and involve six nodes. The number of such

pairs is therefore of order 𝑂 (𝐼 3𝐽 3). Each covariance term Cov(Iℓ ,Iℓ ′) is of order 𝑂 (𝑝7

𝐼 𝐽
), so the

total contribution from pairs that share one edge is of order 𝑂 (𝐼 3𝐽 3𝑝7

𝐼 𝐽
) = 𝑂 (𝐼 6𝑝7

𝐼 𝐽
).

If 𝑘 = 2, the two cycles share exactly two edges and involve five nodes. The number of such

pairs is therefore of order𝑂 (𝐼 5). Each covariance term Cov(Iℓ ,Iℓ ′) is of order𝑂 (𝑝6

𝐼 𝐽
), so the total

contribution from pairs that share two edges is of order 𝑂 (𝐼 5𝑝6

𝐼 𝐽
).

Since the variance is thus

Var(𝐶4(𝐼 , 𝐽 )) = 𝑂 (𝐼 4𝑝4

𝐼 𝐽 ) +𝑂 (𝐼
6𝑝7

𝐼 𝐽 ) +𝑂 (𝐼
5𝑝6

𝐼 𝐽 ),

I can conclude that, when 𝐼𝑝𝐼 𝐽 →∞,

Var(𝐶4(𝐼 , 𝐽 ))
(E[𝐶4(𝐼 , 𝐽 )])2

= 𝑂

(
1

𝐼𝑝𝐼 𝐽

)
→ 0.

Let 𝜖 > 0 be arbitrary. By Chebyshev’s inequality,

Pr

{���� 𝐶4

E[𝐶4]
− 1

���� ≥ 𝜖} = Pr {|𝐶4 − E[𝐶4] | ≥ 𝜖E[𝐶4]} ≤
Var(𝐶4)

𝜖2{E[𝐶4]}2
→ 0,

and hence
𝐶4

E[𝐶4]
𝑝
−→ 1, which establishes

𝐶4(𝐼 , 𝐽 )
𝑝
−→ ∞.

□

The threshold for 𝑝𝐼 𝐽 required by Assumption 5.2 can be compared to the threshold needed

for connectivity. For the network to be connected with high probability, it is necessary that

𝐼𝑝𝐼 𝐽

log(𝐼 ) > 1

(see Section 8.2 of Blum et al. (2020)). Since log(𝐼 ) → ∞, this condition implies 𝐼𝑝𝐼 𝐽 → ∞. In
the bipartite Erdős–Rényi model, such a condition automatically guarantees that the number of

4-cycles diverges. The reverse, however, does not hold: 𝐶4(𝐼 , 𝐽 ) → ∞ even when 𝐼𝑝𝐼 𝐽 grows more

slowly than log(𝐼 ). Hence, connectivity is a strictly stronger requirement than the existence of

many cycles. In particular, under the Erdős-Rényi benchmark, the graph conditions needed for
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identification in the TWFE model also imply consistency of
ˆ𝛽𝐿,𝜋 for estimating 𝛽0 in the Tukey

model.

E Outcome-Based Labeling

To assign labels within each cycle, I proposed an instrument-based procedure that relies on ob-

servable characteristics informative about worker and firm productivities. A natural question

is whether the outcomes themselves could be used for this purpose: since outcomes depend on

productivities, one might expect that, on average, the worker (or firm) with higher productivity

would also generate higher observed outcomes. While this intuition is appealing, it ignores the

exogeneity requirement: the labeling choice must not depend on the errors {𝜂𝑖 𝑗 }, and hence the

outcomes can’t be used as instruments.

To see why this matters, consider the following outcome-based labeling rule, which assigns

labels according to the higher average outcome within a cycle.

Definition 9. (Outcome-Based Labeling) In each cycle ℓ , the labels (𝑖ℓ,𝜋ℓ,𝑦 , 𝑖′ℓ,𝜋ℓ,𝑦 ) and ( 𝑗ℓ,𝜋ℓ,𝑦 , 𝑗
′
ℓ,𝜋ℓ,𝑦
)

are assigned so that

𝑦𝑖ℓ,𝜋ℓ,𝑦 𝑗ℓ,𝜋ℓ,𝑦 + 𝑦𝑖ℓ,𝜋ℓ,𝑦 𝑗 ′ℓ,𝜋ℓ,𝑦 > 𝑦𝑖′
ℓ,𝜋ℓ,𝑦

𝑗ℓ,𝜋ℓ,𝑦
+ 𝑦𝑖′

ℓ,𝜋ℓ,𝑦
𝑗 ′
ℓ,𝜋ℓ,𝑦

,

𝑦𝑖ℓ,𝜋ℓ,𝑦 𝑗ℓ,𝜋ℓ,𝑦 + 𝑦𝑖′ℓ,𝜋ℓ,𝑦 𝑗ℓ,𝜋ℓ,𝑦 > 𝑦𝑖ℓ,𝜋ℓ,𝑦 𝑗
′
ℓ,𝜋ℓ,𝑦
+ 𝑦𝑖′

ℓ,𝜋ℓ,𝑦
𝑗 ′
ℓ,𝜋ℓ,𝑦

.

This induces the signs

𝜋𝛼ℓ,𝑦 = sign

(
𝑦𝑖ℓ 𝑗ℓ + 𝑦𝑖ℓ 𝑗 ′ℓ − 𝑦𝑖′ℓ 𝑗ℓ − 𝑦𝑖′ℓ 𝑗 ′ℓ

)
, 𝜋

𝜓

ℓ,𝑦
= sign

(
𝑦𝑖ℓ 𝑗ℓ + 𝑦𝑖′ℓ 𝑗ℓ − 𝑦𝑖ℓ 𝑗 ′ℓ − 𝑦𝑖′ℓ 𝑗 ′ℓ

)
.

Because these signs depend directly on the realized errors 𝜂𝑖 𝑗 , the resulting estimator
ˆ𝛽𝐿,𝑦 is

no longer consistent. To illustrate, consider the case 𝛽0 = 0, 𝛼𝑖ℓ − 𝛼𝑖′ℓ = 1, and 𝜓 𝑗ℓ −𝜓 𝑗 ′ℓ = 1, with

𝜂𝑖′
ℓ
𝑗ℓ = 𝜂𝑖′ℓ 𝑗

′
ℓ
= 0. In this setting, the numerator and denominator of

ˆ𝛽𝐿,𝑦 simplify to

1

𝐿

𝐿∑︁
ℓ=1

(𝜂𝑖ℓ 𝑗ℓ − 𝜂𝑖ℓ 𝑗 ′ℓ ) 𝜋
𝛼
ℓ,𝑦𝜋

𝜓

ℓ,𝑦
=

1

𝐿

𝐿∑︁
ℓ=1

|𝜂𝑖ℓ 𝑗ℓ − 𝜂𝑖ℓ 𝑗 ′ℓ | sign
(
𝜂𝑖ℓ 𝑗ℓ + 𝜂𝑖ℓ 𝑗 ′ℓ

)
,

1

𝐿

𝐿∑︁
ℓ=1

(2𝜂𝑖ℓ 𝑗ℓ − 3𝜂𝑖ℓ 𝑗 ′ℓ − 1) 𝜋𝛼ℓ,𝑦𝜋
𝜓

ℓ,𝑦
=

1

𝐿

𝐿∑︁
ℓ=1

(2𝜂𝑖ℓ 𝑗ℓ − 3𝜂𝑖ℓ 𝑗 ′ℓ − 1) sign
(
𝜂𝑖ℓ 𝑗ℓ − 𝜂𝑖ℓ 𝑗 ′ℓ

)
sign

(
𝜂𝑖ℓ 𝑗ℓ + 𝜂𝑖ℓ 𝑗 ′ℓ

)
.

With independent error distributions, one can construct examples where
ˆ𝛽𝐿,𝑦 converges al-
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most surely to values different from zero, despite 𝛽0 = 0. For instance:

𝜂𝑖ℓ 𝑗ℓ :=


3, 𝑝 = 1

4
,

−1, 𝑝 = 3

4
,

𝜂𝑖ℓ 𝑗 ′ℓ :=


2, 𝑝 = 5

7
,

−5, 𝑝 = 2

7
,

=⇒ ˆ𝛽𝐿,𝑦 →𝑎.𝑠 . 5

9
,

while with

𝜂𝑖ℓ 𝑗ℓ :=


1, 𝑝 = 3

4
,

−3, 𝑝 = 1

4
,

𝜂𝑖ℓ 𝑗 ′ℓ :=


6, 𝑝 = 1

4
,

−2, 𝑝 = 3

4
,

=⇒ ˆ𝛽𝐿,𝑦 →𝑎.𝑠 . −3

5
.

These examples show that outcome-based labeling introduces asymptotic bias into
ˆ𝛽𝐿,𝑦 , which

can be either positive or negative depending on the error distribution. The problem arises because

the labeling uses information contaminated by 𝜂𝑖 𝑗 , violating exogeneity. This underscores the

need for external instruments to guide label assignment.

F Alternating Least Squares in the Tukey model

Consider the problem:

(𝜶̂ ′, 𝝍̂′) ∈ arg min

𝜶 ′,𝝍′

∑︁
(𝑖, 𝑗)∈O𝐼 𝐽

(
𝑦′𝑖 𝑗 − 𝛼′𝑖𝜓 ′𝑗

)
2

s.t. ∥𝝍′∥ = 1. (F.1)

Problem (F.1) is non-convex but admits a unique global optimum, up to the normalisation ∥𝝍′∥ =
1, as long as the matching network 𝐺𝐼 𝐽 is connected.

2

In practice, solve Problem (F.1) using alternating least squares. Starting from any 𝝍 (0) ≠ 0
with ∥𝝍 (0) ∥2 = 1, and iterating for 𝑡 = 0, 1, 2, . . . , first set

𝛼
(𝑡+1)
𝑖

:=

∑︁
𝑗 :𝐷𝑖 𝑗=1

𝜓
(𝑡)
𝑗
𝑦𝑖 𝑗∑︁

𝑗 :𝐷𝑖 𝑗=1

(
𝜓
(𝑡)
𝑗

)
2

, 𝑖 = 1, . . . , 𝐼 , (F.2)

𝜓
(𝑡+1)
𝑗

:=

∑︁
𝑖:𝐷𝑖 𝑗=1

𝛼
(𝑡+1)
𝑖

𝑦𝑖 𝑗∑︁
𝑖:𝐷𝑖 𝑗=1

(
𝛼
(𝑡+1)
𝑖

)
2

, 𝑗 = 1, . . . , 𝐽 , (F.3)

2
The scale can be fixed inmany equivalent ways; the 𝐿2

constraint is convenient because it preserves closed-form

updates.
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and then rescale

𝑐 :=


𝝍 (𝑡+1)



2
, 𝜶 (𝑡+1) ← 𝑐𝜶 (𝑡+1), 𝝍 (𝑡+1) ← 𝝍 (𝑡+1)/𝑐.

Equations (F.2)–(F.3) are ordinary least-squares fits with a single regressor: holding 𝝍 fixed,

each 𝛼𝑖 is the slope from regressing {𝑦𝑖 𝑗 } 𝑗 :𝐷𝑖 𝑗=1 on {𝜓 𝑗 } 𝑗 :𝐷𝑖 𝑗=1; with the updated 𝜶 fixed, each 𝜓 𝑗

is obtained symmetrically. Because (F.1) is bi-convex, the alternating least squares scheme mono-

tonically decreases the criterion and converges to the global minimizer when 𝐺𝐼 𝐽 is connected.

G Lemmas

Lemma 7. (Regularity of Cycle-Based Error Terms) Under Assumptions 5.1 and 5.4, the derived er-
ror terms 𝜖Δ1,ℓ,𝜋ℓ and 𝜖Δ2,ℓ,𝜋ℓ satisfyE[𝜖Δ1,ℓ,𝜋ℓ ] = E[𝜖Δ2,ℓ,𝜋ℓ ] = 0,Var(𝜖Δ1,ℓ,𝜋ℓ ) ≥ 𝐶1 > 0,Var(𝜖Δ2,ℓ,𝜋ℓ ) ≥
𝐶2 > 0, and E[|𝜖Δ1,ℓ,𝜋ℓ | 2+𝛿

′] ≤ 𝑀1 < ∞, E[|𝜖Δ2,ℓ,𝜋ℓ | 2+𝛿 ] ≤ 𝑀2 < ∞ for some 𝛿 > 0 and finite con-
stants 𝐶1,𝐶2, 𝑀1, 𝑀2.

Proof. Recall

𝜖Δ1,ℓ,𝜋ℓ = 𝜖Δ1,ℓ𝜋
𝛼
ℓ 𝜋

𝜓

ℓ
,

𝜖Δ2,ℓ,𝜋ℓ = 𝜖Δ2,ℓ𝜋
𝛼
ℓ 𝜋

𝜓

ℓ
,

with

𝜖Δ1,ℓ = 𝜂𝑖ℓ 𝑗ℓ − 𝜂𝑖′ℓ 𝑗ℓ − 𝜂𝑖ℓ 𝑗 ′ℓ + 𝜂𝑖′ℓ 𝑗 ′ℓ ,
𝜖Δ2,ℓ = 𝜃𝑖ℓ 𝑗ℓ𝜂𝑖′ℓ 𝑗

′
ℓ
+ 𝜃𝑖′

ℓ
𝑗 ′
ℓ
𝜂𝑖ℓ 𝑗ℓ − 𝜃𝑖′ℓ 𝑗ℓ𝜂𝑖ℓ 𝑗 ′ℓ − 𝜃𝑖ℓ 𝑗 ′ℓ𝜂𝑖′ℓ 𝑗ℓ + 𝜂𝑖ℓ 𝑗ℓ𝜂𝑖′ℓ 𝑗 ′ℓ − 𝜂𝑖′ℓ 𝑗ℓ𝜂𝑖ℓ 𝑗 ′ℓ .

Since 𝛼𝑖 , 𝜓 𝑗 and 𝛽0, and hence 𝜃𝑖 𝑗 , are bounded, Assumption 5.1 and standard properties of

expectation, variance, and moments guarantee 𝜖Δ1,ℓ and 𝜖Δ2,ℓ to have mean zero, positive variance

and uniformly bounded 2 + 𝛿 moments.

The term 𝜋𝛼
ℓ
𝜋
𝜓

ℓ
is a random variable with support {−1, +1}, hence with uniformly bounded

moments.

By Assumption 5.4, 𝜖Δ1,ℓ,𝜋ℓ and 𝜖Δ2,ℓ,𝜋ℓ are the products of two independent random variables,

one with mean zero, positive variance and uniformly bounded 2 + 𝛿 moments and the other with

uniformly bounded moments. This implies they are also mean zero, have positive variance and

bounded 2 + 𝛿 moments. □

Lemma 8. (Properties of Composite Error𝑢ℓ,𝜋ℓ ) Under Assumption 5.1 and 5.4, the composite error
term 𝑢ℓ,𝜋ℓ satisfies E[𝑢ℓ,𝜋ℓ ] = 0 and Var(𝑢ℓ,𝜋ℓ ) ≥ 𝐶𝑢 > 0, for a finite constant𝐶𝑢 . Its moments satisfy
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E[|𝑢ℓ,𝜋ℓ | 2+𝛿 ] ≤ 𝑀𝑢 < ∞ for some 𝛿 > 0 and finite constant𝑀𝑢 . Furthermore, the variance Var(𝑢ℓ,𝜋ℓ )
does not depend on the choice of the labeling.

Proof. Recall:

𝑢ℓ,𝜋ℓ := 𝜖Δ1,ℓ,𝜋ℓ + 𝛽0𝜖Δ2,ℓ,𝜋ℓ = (𝜖Δ1,ℓ + 𝛽0𝜖Δ2,ℓ)𝜋𝛼ℓ 𝜋
𝜓

ℓ
= 𝑢ℓ𝜋

𝛼
ℓ 𝜋

𝜓

ℓ

with 𝑢ℓ := 𝜖Δ1,ℓ + 𝛽0𝜖Δ2,ℓ .

Since 𝛼𝑖 , 𝜓 𝑗 and 𝛽0, and hence 𝜃𝑖 𝑗 , are bounded, Assumption 5.1 and standard properties of

expectation, variance, and moments guarantee 𝜖Δ1,ℓ and 𝜖Δ2,ℓ , and hence 𝑢ℓ , to have mean zero,

positive variance and uniformly bounded 2 + 𝛿 moments.

The term 𝜋𝛼
ℓ
𝜋
𝜓

ℓ
is a random variable with support {−1, +1}, hence with uniformly bounded

moments.

By Assumption 5.4, 𝑢ℓ,𝜋ℓ is the product of two independent random variables, one with mean

zero, positive variance, and uniformly bounded 2 + 𝛿 moments, and the other with uniformly

bounded moments. This implies they are also mean zero, have positive variance, and bounded

2 + 𝛿 moments.

Finally, note that

Var(𝑢ℓ,𝜋ℓ ) = Var(𝑢ℓ𝜋𝛼ℓ 𝜋
𝜓

ℓ
) = E[(𝑢ℓ𝜋𝛼ℓ 𝜋

𝜓

ℓ
− E[𝑢ℓ𝜋𝛼ℓ 𝜋

𝜓

ℓ
])2] = E[(𝑢ℓ𝜋𝛼ℓ 𝜋

𝜓

ℓ
)2] = E[𝑢2

ℓ ] = Var(𝑢ℓ),

and hence the variance Var(𝑢ℓ,𝜋ℓ ) does not depend on the labelings 𝜋𝛼
ℓ
and 𝜋

𝜓

ℓ
. □

H Proofs

H.1 Proof of Theorem 1

First, I show that the presence of a cycle is necessary for identifying 𝛽0. Suppose, by contradiction,

that𝐺𝐼 𝐽 contains no cycles. If it is connected, it is a tree. If it is disconnected, it decomposes into

multiple tree components; focusing on any one component suffices, as the same argument applies

to each. A tree with 𝑀 nodes has 𝑀 − 1 edges, corresponding to 𝑀 − 1 observed matches. The

model includes 𝑀 node-specific parameters (one for each worker or firm) and the interaction

parameter 𝛽0, for a total of𝑀 + 1 unknowns.

Consider the normalization 𝛼𝑖0 = 0, and fix an arbitrary value of 𝛽0. In a tree, there is always

at least one edge connecting a known node to an unknown one. The equation on that edge,
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𝜃𝑖 𝑗 = 𝛼𝑖 +𝜓 𝑗 + 𝛽𝛼𝑖𝜓 𝑗 , becomes linear in the unknown parameter. For instance, if 𝛼𝑖 is known, then

𝜃𝑖 𝑗 − 𝛼𝑖 = 𝜓 𝑗 (1 + 𝛽𝛼𝑖) =⇒ 𝜓 𝑗 =
𝜃𝑖 𝑗 − 𝛼𝑖
1 + 𝛽𝛼𝑖

which is unique provided 1 + 𝛽𝛼𝑖 ≠ 0. Removing this edge shrinks the tree, and one repeats until

all productivities are solved in terms of 𝛽0. Varying 𝛽0 yields a continuum of distinct solutions 𝜶

and 𝝍, all consistent with the same observed systematic outcome. Since 𝛽0 can be chosen freely

without contradiction (apart from that one value per edge), it is not identified when𝐺𝐼 𝐽 is a forest.

Therefore, the existence of at least one cycle in 𝐺𝐼 𝐽 is necessary for the identification of 𝛽0.

Consider such a cycle, of length 2𝐾 with 𝐾 ≥ 2, and relabel the corresponding outcomes

𝜃𝑖1, 𝑗1, 𝜃𝑖2, 𝑗1, . . . 𝜃𝑖𝐾 , 𝑗𝐾 , 𝜃𝑖1, 𝑗𝐾 as 𝜃 (1), 𝜃 (2), . . . , 𝜃 (2𝐾) in the order encountered.

Define

𝑢𝑖 := 1 + 𝛽0 𝛼𝑖, 𝑣 𝑗 := 1 + 𝛽0𝜓 𝑗 .

Then for each (𝑖, 𝑗),

1 + 𝛽0𝜃𝑖 𝑗 = 1 + 𝛽0(𝛼𝑖 +𝜓 𝑗 + 𝛽0𝛼𝑖𝜓 𝑗 ) = (1 + 𝛽0𝛼𝑖) (1 + 𝛽0𝜓 𝑗 ) = 𝑢𝑖𝑣 𝑗 .

Hence, traversing the cycle gives

𝐾∏
𝑘=1

(
1 + 𝛽0𝜃

(2𝑘−1) ) = 𝐾∏
𝑘=1

𝑢𝑖𝑘𝑣 𝑗𝑘 =

𝐾∏
𝑘=1

𝑢𝑖𝑘+1𝑣 𝑗𝑘 =

𝐾∏
𝑘=1

(
1 + 𝛽0𝜃

(2𝑘) ),
where 𝑖𝐾+1 = 𝑖1.

Expand the products in elementary symmetric sums:

𝐾∏
𝑘=1

(1 + 𝛽0𝜃
(2𝑘−1)) =

𝐾∑︁
𝑟=0

𝑆odd

𝑟 𝛽𝑟
0
,

𝐾∏
𝑘=1

(1 + 𝛽0𝜃
(2𝑘)) =

𝐾∑︁
𝑟=0

𝑆even

𝑟 𝛽𝑟
0

where

𝑆odd

𝑟 =
∑︁

1≤𝑘1<···<𝑘𝑟≤𝐾
𝜃 (2𝑘1−1) · · · 𝜃 (2𝑘𝑟−1), 𝑆even

𝑟 =
∑︁

1≤𝑘1<···<𝑘𝑟≤𝐾
𝜃 (2𝑘1) · · · 𝜃 (2𝑘𝑟 ),

and the notation

∑
1≤𝑘1<···<𝑘𝑟≤𝐾 denotes the sum over all

(𝐾
𝑟

)
ways to choose 𝑟 distinct indices
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1 ≤ 𝑘1 < · · · < 𝑘𝑟 ≤ 𝐾 , each counted exactly once. Then, for each such tuple (𝑘1, . . . , 𝑘𝑟 ), the term
𝜃 (2𝑘1−1) · · · 𝜃 (2𝑘𝑟−1)

is the product of the corresponding 𝑟 odd-indexed 𝜃 -values, and analogously

for 𝜃 (2𝑘1) · · · 𝜃 (2𝑘𝑟 ) .
Subtracting these expansions eliminates the constant term (𝑟 = 0), leaving

𝐾∑︁
𝑟=1

(
𝑆odd

𝑟 − 𝑆even

𝑟

)
𝛽𝑟

0
= 0.

Set

Δ𝑟 = 𝑆
odd

𝑟 − 𝑆even

𝑟 , 𝑟 = 1, 2, . . . , 𝐾 .

to obtain the degree-𝐾 polynomial

Δ1𝛽0 + Δ2𝛽
2

0
+ · · · + Δ𝐾𝛽𝐾0 = 0.

By construction, 𝛽0 = 0 is always a root, but does not recover the interaction parameter.

Factoring it out, one discards the trivial solution and focuses on the roots of

Δ1 + Δ2𝛽0 + Δ3𝛽
2

0
+ · · · + Δ𝐾𝛽 𝐾−1

0
= 0.

If this polynomial has an additional root 𝛽0 = 0, that is a true admissible value for the interaction

parameter, differently from the purely algebraic root as above.

Uniqueness of the root is guaranteed only when 𝐾 = 2. Any cycle with 𝐾 > 2 does not allow

for point identification of 𝛽0, since it restricts its value to a set with 𝐾 − 1 elements.

When 𝐾 = 2, the derived formulas are

Δ1 = 𝜃
(1) + 𝜃 (3) − 𝜃 (2) − 𝜃 (4) = 𝜃𝑖1 𝑗1 + 𝜃𝑖2 𝑗2 − 𝜃𝑖1 𝑗2 − 𝜃𝑖2 𝑗1,

Δ2 = 𝜃
(1)𝜃 (3) − 𝜃 (2)𝜃 (4) = 𝜃𝑖1 𝑗1𝜃𝑖2 𝑗2 − 𝜃𝑖1 𝑗2𝜃𝑖2 𝑗1,

and the polynomial becomes

(𝜃𝑖1 𝑗1 + 𝜃𝑖2 𝑗2 − 𝜃𝑖1 𝑗2 − 𝜃𝑖2 𝑗1) + 𝛽0(𝜃𝑖1 𝑗1𝜃𝑖2 𝑗2 − 𝜃𝑖1 𝑗2𝜃𝑖2 𝑗1) = 0.

𝛽0 is hence identified:

𝛽0 = −
𝜃𝑖1 𝑗1 + 𝜃𝑖2 𝑗2 − 𝜃𝑖1 𝑗2 − 𝜃𝑖2 𝑗1
𝜃𝑖1 𝑗1𝜃𝑖2 𝑗2 − 𝜃𝑖1 𝑗2𝜃𝑖2 𝑗1
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where Assumption 1 guarantees the denominator being different from 0. In fact,

𝜃𝑖1 𝑗1𝜃𝑖2 𝑗2 − 𝜃𝑖1 𝑗2𝜃𝑖2 𝑗1 = 𝛼𝑖1𝜓 𝑗1 + 𝛼𝑖2𝜓 𝑗2 − 𝛼𝑖2𝜓 𝑗1 − 𝛼𝑖1𝜓 𝑗2 = −(𝛼𝑖1 − 𝛼𝑖2) (𝜓 𝑗1 −𝜓 𝑗2).

H.2 Proof of Theorem 2

Sufficiency. Consider the model 𝜃𝑖 𝑗 = 𝛼𝑖 +𝜓 𝑗 + 𝛽0𝛼𝑖𝜓 𝑗 , with 𝛽0 known. If 𝛽0 = 0, this reduces to

the usual TWFE model. If 𝛽0 ≠ 0, rewrite

𝜃𝑖 𝑗 = 𝛼𝑖 +𝜓 𝑗 + 𝛽0𝛼𝑖𝜓 𝑗 =⇒ 1 + 𝛽0𝜃𝑖 𝑗 = (1 + 𝛽0𝛼𝑖) (1 + 𝛽0𝜓 𝑗 )

and set

𝛼′𝑖 = 1 + 𝛽0𝛼𝑖, 𝜓 ′𝑗 = 1 + 𝛽0𝜓 𝑗 , 𝜃 ′𝑖 𝑗 = 1 + 𝛽0𝜃𝑖 𝑗 ,

which give

𝜃 ′𝑖 𝑗 = 𝛼
′
𝑖𝜓
′
𝑗

where 𝜃 ′𝑖 𝑗 is identified. Clearly, 𝜶 and 𝝍 are identified if 𝛼′𝑖 and𝜓
′
𝑗 are identified for all 𝑖 and 𝑗 .

Since 𝛼𝑖0 = 0, 𝛼′𝑖0 = 1 + 𝛽0𝛼𝑖 = 1. If workers 𝑖 and 𝑖′ both match with firm 𝑗 , then
𝜃 ′𝑖 𝑗
𝜃 ′
𝑖′ 𝑗

=
𝛼 ′𝑖𝜓

′
𝑗

𝛼 ′
𝑖′𝜓
′
𝑗
=

𝛼 ′𝑖
𝛼 ′
𝑖′
, and the ratio is hence identified. Since 𝐺𝐼 𝐽 is connected, for any worker 𝑖 there exists a path

𝑖0 − 𝑗1 − 𝑖1 − 𝑗2 − . . . − 𝑗𝑚 − 𝑖 .

Applying the ratio argument at each firm along the path:

𝛼′𝑖
𝛼′
𝑖0

=
𝛼′𝑖
𝛼′
𝑖𝑚−1

·
𝛼′𝑖𝑚−1

𝛼′
𝑖𝑚−2

· · ·
𝛼′𝑖1
𝛼′
𝑖0

=

𝑚∏
𝑘=1

𝜃 ′𝑖𝑘 𝑗𝑘
𝜃 ′
𝑖𝑘−1

𝑗𝑘

which pins down 𝛼𝑖 uniquely since 𝛼′𝑖0 = 1.

Once all 𝛼𝑖 are known, any observed edge gives𝜓 ′𝑗 =
𝜃 ′𝑖 𝑗
𝛼 ′
𝑖
, uniquely determining each𝜓 𝑗 .

Necessity. If 𝐺𝐼 𝐽 is disconnected, it splits into at least two components. On each component,

one may independently rescale the local 𝛼′𝑖 ’s and𝜓
′
𝑗 ’s without changing the product 𝛼

′
𝑖𝜓
′
𝑗 on that

component. Thus, parameters across different components cannot be jointly identified.
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H.3 Proof of Theorem 3

First, note that identification in the BLM model requires two normalizations (𝑎 𝑗0 = 𝑏 𝑗0 = 1). To

see why, consider parameter vectors (𝒂, 𝒃,𝜶 ) and (𝒂′, 𝒃′,𝜶 ′) with

𝛼′𝑖 = 𝑐1𝛼𝑖 + 𝑐2, 𝑏′𝑗 =
𝑏 𝑗

𝑐1

, 𝑎′𝑗 = 𝑎 𝑗 −
𝑏 𝑗𝑐2

𝑐1

,

for 𝑐1, 𝑐2 ∈ R with 𝑐1 ≠ 0, and note that the BLM models with (𝒂, 𝒃,𝜶 ) and (𝒂′, 𝒃′,𝜶 ′) are obser-
vationally equivalent. To pin down the two degrees of freedom, two normalizations are needed.

Sufficiency. To prove sufficiency of Assumption 3, proceed along the Seed-and-Snowballs con-

struction. Let 𝑗0 indicate the seed with the normalization 𝑎 𝑗0 = 𝑏 𝑗0 = 1.

Assume that, at some stage 𝑛 ≥ 0, all parameters of firms in 𝑆
𝐽
𝑛 are known. Hence, identify

parameters associated with workers in 𝑆 𝐼𝑛 and firms in 𝑆
𝐽

𝑛+1 as follows:

(i) Firms→ workers. For each worker 𝑖 ∈ 𝑆 𝐼𝑛 , there exists a firm 𝑗 ∈ 𝑆 𝐽𝑛 such that 𝐷𝑖 𝑗 = 1 and

𝑏 𝑗 ≠ 0, and hence

𝛼𝑖 =
𝜃𝑖 𝑗 − 𝑎 𝑗
𝑏 𝑗

.

(ii) Workers→ firms. For each firm 𝑗 ∈ 𝑆 𝐽
𝑛+1 there exist two workers 𝑖, 𝑖′ ∈ 𝑆 𝐼𝑛 such that 𝐷𝑖 𝑗 =

𝐷𝑖′ 𝑗 = 1 and 𝛼𝑖 ≠ 𝛼𝑖′ , and hence


𝜃𝑖 𝑗 = 𝑎 𝑗 + 𝑏 𝑗𝛼𝑖
𝜃𝑖′ 𝑗 = 𝑎 𝑗 + 𝑏 𝑗𝛼𝑖′

⇐⇒

𝑏 𝑗 =

𝜃𝑖′ 𝑗−𝜃𝑖 𝑗
𝛼𝑖′−𝛼𝑖

𝑎 𝑗 = 𝜃𝑖 𝑗 −
𝜃𝑖′ 𝑗−𝜃𝑖 𝑗
𝛼𝑖′−𝛼𝑖 𝛼𝑖 .

Because the snowball reaches (𝐼 , 𝐽 ) after finitely many steps, every 𝛼𝑖 , 𝑎 𝑗 , 𝑏 𝑗 is eventually

determined. Together with the two normalizations, this proves sufficiency.

Necessity. If 𝐺𝐼 𝐽 is disconnected, it splits into at least two components. On each component,

one may independently rescale the local 𝛼𝑖 ’s, 𝑎 𝑗 ’s, and 𝑏 𝑗 ’s without changing the 𝜃𝑖 𝑗 ’s on that

component. Thu,s parameters across different components cannot be jointly identified.

Suppose now that𝐺𝐼 𝐽 is connected but does not satisfy the Seed-and-Snowballs property. Fix

a seed 𝑗0 and run the algorithm until it stalls at some finite step 𝑛. Consider

𝑆
𝐽
𝑛 ⊂ 𝐽 , 𝑆 𝐼𝑛 ⊂ 𝐼 .
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By construction, every firm in the outer set

𝐽 out = 𝐽 \ 𝑆 𝐽𝑛

is linked to at most one worker already in 𝑆 𝐼𝑛 . If such a link exists, call its worker the bridge of

the firm. Write 𝐼out = 𝐼 \ 𝑆 𝐼𝑛 for the outer workers.
Choose an outer firm 𝑗𝜆 ∈ 𝐽 out and let 𝑖𝜆 ∈ 𝑆 𝐼𝑛 be its bridge (it exists because𝐺𝐼 𝐽 is connected).

Redefine

𝑏𝜆𝑗𝜆 = 𝜆 𝑏 𝑗𝜆 , 𝑎𝜆𝑗𝜆 = 𝜃𝑖𝜆 𝑗𝜆 − 𝑏
𝜆
𝑗𝜆
𝛼𝑖𝜆

and note that this preserves the value of 𝜃𝑖𝜆 𝑗𝜆 while altering (𝑎 𝑗𝜆 , 𝑏 𝑗𝜆 ).
For every worker 𝑖 ∈ 𝐼out that is connected to at least one firm whose (𝑎, 𝑏) have already been

(re)defined, pick one such firm, denote it by 𝑗 (𝑖), and set

𝛼𝜆𝑖 =
𝜃𝑖 𝑗 (𝑖) − 𝑎𝜆𝑗 (𝑖)

𝑏𝜆
𝑗 (𝑖)

,

where as long as 𝜆 is such that 𝑏𝜆
𝑗 (𝑖) ≠ 0, 𝛼𝜆

𝑖
is well-defined, and 𝜃𝑖 𝑗 (𝑖) preserved.

Whenever a still-unprocessed firm 𝑗 ∈ 𝐽 out is observedwith twoworkers whose productivities
are already determined and distinct, say 𝑖 and 𝑖′, solve


𝜃𝑖 𝑗 = 𝑎

𝜆
𝑗
+ 𝑏𝜆

𝑗
𝛼𝜆
𝑖

𝜃𝑖′ 𝑗 = 𝑎
𝜆
𝑗
+ 𝑏𝜆

𝑗
𝛼𝜆
𝑖′

⇐⇒

𝑏𝜆
𝑗
=

𝜃𝑖′ 𝑗−𝜃𝑖 𝑗
𝛼𝜆
𝑖′−𝛼

𝜆
𝑖

𝑎𝜆
𝑗
= 𝜃𝑖 𝑗 − 𝑏𝜆𝑗 𝛼𝜆𝑖

where the right-hand sides depend smoothly on 𝜆 via the 𝛼 ’s.

Iteratively repeat these two steps until all parameters have been recovered, and in case of

additional degree of freedom (because again at a certain point remain only firms with one worker

whose productivity has already been determined), just set the parameters at their true value. For

𝜆 = 1 the procedure returns the original parameters. For 𝜆 ≠ 1 it changes at least 𝑏 𝑗𝜆 , so the

parameter vector is different. Because the choice of 𝜆 is arbitrary, the data are compatible with

infinitely many distinct (𝜶 𝜆, 𝒂𝜆, 𝒃𝜆), establishing lack of identification.
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H.4 Proof of Proposition 1

Let (𝑓𝑚,𝜶 , 𝝍,𝐺𝐼 𝐽 ) be any representation with 𝜃𝑖 𝑗 = 𝑓𝑚 (𝛼𝑖,𝜓 𝑗 ). Choose any strictly increasing

transformations 𝑔𝛼 and 𝑔𝜓 , and define

𝛼′𝑖 = 𝑔𝛼 (𝛼𝑖), 𝜓 ′𝑗 = 𝑔𝜓 (𝜓 𝑗 ), 𝑓 ′𝑚 (𝛼,𝜓 ) = 𝑓𝑚 (𝑔−1

𝛼 (𝛼), 𝑔−1

𝜓
(𝜓 )).

Then,

𝑓 ′𝑚 (𝛼′𝑖 ,𝜓 ′𝑗 ) = 𝑓𝑚 (𝑔−1

𝛼 (𝑔𝛼 (𝛼𝑖)), 𝑔−1

𝜓
(𝑔𝜓 (𝜓 𝑗 ))) = 𝑓𝑚 (𝛼𝑖,𝜓 𝑗 ),

and hence (𝑓𝑚,𝜶 , 𝝍,𝐺𝐼 𝐽 ) and (𝑓 ′𝑚,𝜶 ′, 𝝍′,𝐺𝐼 𝐽 ) are observationally equivalent.

H.5 Proof of Theorem 4

I prove the result for the ranking of 𝜶 ; the argument for 𝝍 is analogous.

Sufficiency. Fix any two workers 𝑖 and 𝑖′. By Assumption 4 there exists a firm 𝑗 such that

(𝑖, 𝑗), (𝑖′, 𝑗) ∈ O𝐼 𝐽 . Because 𝑓𝑚 is strictly increasing in each argument, the sign of 𝜃𝑖 𝑗 − 𝜃𝑖′ 𝑗 reveals
whether 𝛼𝑖 exceeds 𝛼𝑖′ . Collecting these pairwise comparisons for all (𝑖, 𝑖′) constructs a complete,

transitive ranking of the workers, which is therefore identified.

Necessity. Suppose, to reach a contradiction, that Assumption 4 fails. Then there exist two

distinct workers 𝑖 and 𝑖′ such that no firm 𝑗 satisfies (𝑖, 𝑗), (𝑖′, 𝑗) ∈ O𝐼 𝐽 . Suppose 𝛼𝑖 > 𝛼𝑖′′ and 𝛼𝑖′ >
𝛼𝑖′′ , for any 𝑖

′′ ≠ 𝑖 , 𝑖′′ ≠ 𝑖′. Also, suppose that for any pair of firms 𝑗 and 𝑗 ′ such that (𝑖, 𝑗), (𝑖′, 𝑗 ′) ∈
O𝐼 𝐽 , it holds that 𝜓 𝑗 > 𝜓 𝑗 ′ , and 𝜃𝑖 𝑗 > 𝜃𝑖′ 𝑗 ′ . Now consider the bivariate isotonic matrix where

workers 𝑖 and 𝑖′ occupy the first two rows. Swapping the first and second rows, and filling in

the missing entries with appropriate values, preserves both row- and column-wise monotonicity.

This yields a second isotonic matrix that is observationally equivalent to the original but reverses

the relative order of 𝑖 and 𝑖′. Therefore, the ranking of workers is not point-identified, implying

that Assumption 4 is necessary.
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H.6 Proof of Theorem 5

Rewrite the estimator as

ˆ𝛽𝐿,𝜋 = −
1

𝐿

∑𝐿
ℓ=1

Δ̂1,ℓ,𝜋ℓ

1

𝐿

∑𝐿
ℓ=1

Δ̂2,ℓ,𝜋ℓ

= −
1

𝐿

∑𝐿
ℓ=1

Δ1,ℓ,𝜋ℓ + 1

𝐿

∑𝐿
ℓ=1
𝜖Δ1,ℓ,𝜋ℓ

1

𝐿

∑𝐿
ℓ=1

Δ2,ℓ,𝜋ℓ + 1

𝐿

∑𝐿
ℓ=1
𝜖Δ2,ℓ,𝜋ℓ

= −
𝛽0

1

𝐿

∑𝐿
ℓ=1
(𝛼𝑖ℓ − 𝛼𝑖′ℓ ) (𝜓 𝑗ℓ −𝜓 𝑗 ′ℓ )𝜋

𝛼
ℓ
𝜋
𝜓

ℓ
+ 1

𝐿

∑𝐿
ℓ=1
𝜖Δ1,ℓ,𝜋ℓ

− 1

𝐿

∑𝐿
ℓ=1
(𝛼𝑖ℓ − 𝛼𝑖′ℓ ) (𝜓 𝑗ℓ −𝜓 𝑗 ′ℓ )𝜋

𝛼
ℓ
𝜋
𝜓

ℓ
+ 1

𝐿

∑𝐿
ℓ=1
𝜖Δ2,ℓ,𝜋ℓ

.

Consider the two collections

{𝜖Δ1,𝐿,ℓ,𝜋ℓ : 1 ≤ ℓ ≤ 𝐿} and {𝜖Δ2,𝐿,ℓ,𝜋ℓ : 1 ≤ ℓ ≤ 𝐿}.

By Lemma 7, each entry in these triangular arrays has mean zero and uniformly bounded 2 + 𝛿
moments. Hence, by the Strong Law of Large Numbers for triangular arrays, conclude

1

𝐿

𝐿∑︁
ℓ=1

𝜖Δ1,ℓ,𝜋ℓ →𝑎.𝑠 .
0 and

1

𝐿

𝐿∑︁
ℓ=1

𝜖Δ2,ℓ,𝜋ℓ →𝑎.𝑠 .
0

as 𝐿 →∞, a limit guaranteed by Assumption 5.2.

Applying the Continuous Mapping Theorem, and using the facts that 𝜇𝐿 ≠ 0 by Assumption

5.3 and 𝑐𝜋 ≠ 0 by Assumption 5.4, yields the desired result:

ˆ𝛽𝐿 = −
𝛽0(𝜇𝐿𝑐𝜋 + 𝑜𝑎.𝑠 . (1)) + 𝑜𝑎.𝑠 . (1)
−𝜇𝐿𝑐𝜋 + 𝑜𝑎.𝑠 . (1)) + 𝑜𝑎.𝑠 . (1)

→𝑎.𝑠 . −𝛽0𝜇𝐿𝑐𝜋

−𝜇𝐿𝑐𝜋
= 𝛽0.

H.7 Proof of Theorem 6

Define the functions

𝑔(Δ1,Δ2, 𝛽) := Δ1 + 𝛽Δ2, and 𝑔𝐿,𝜋 (𝛽) :=
1

𝐿

𝐿∑︁
ℓ=1

Δ̂1,ℓ,𝜋ℓ + 𝛽
1

𝐿

𝐿∑︁
ℓ=1

Δ̂2,ℓ,𝜋ℓ .

Write the estimator
ˆ𝛽𝐿,𝜋 as the minimizer of

[
𝑔𝐿,𝜋 (𝛽)

]
2

:

ˆ𝛽𝐿,𝜋 = arg min

𝛽∈𝐵

[
𝑔𝐿,𝜋 (𝛽)

]
2

= −
1

𝐿

∑𝐿
ℓ=1

Δ̂1,ℓ,𝜋ℓ

1

𝐿

∑𝐿
ℓ=1

Δ̂2,ℓ,𝜋ℓ

,

68



for a compact parameter space 𝐵 ⊂ R containing 𝛽0, and note that it implies 0 = 𝑔𝐿,𝜋 ( ˆ𝛽𝐿,𝜋 ).
Consider a first-order Taylor expansion of 𝑔𝐿,𝜋 ( ˆ𝛽𝐿,𝜋 ) around the true parameter 𝛽0:

0 = 𝑔𝐿,𝜋 ( ˆ𝛽𝐿,𝜋 ) = 𝑔𝐿,𝜋 (𝛽0) +
𝜕𝑔𝐿,𝜋 ( ˜𝛽)
𝜕𝛽

( ˆ𝛽𝐿,𝜋 − 𝛽0),

where
˜𝛽 is an intermediate value between

ˆ𝛽𝐿 and 𝛽0, and
𝜕𝑔𝐿,𝜋 (𝛽)
𝜕𝛽

= 1

𝐿

∑𝐿
ℓ=1

Δ̂2,ℓ,𝜋ℓ . Rearranging

gives:

√
𝐿( ˆ𝛽𝐿,𝜋 − 𝛽0) =

√
𝐿𝑔𝐿,𝜋 (𝛽0)

− 1

𝐿

∑𝐿
ℓ=1

Δ̂2,ℓ,𝜋ℓ

=

√
𝐿( 1

𝐿

∑𝐿
ℓ=1

Δ̂1,ℓ,𝜋ℓ + 𝛽0

1

𝐿

∑𝐿
ℓ=1

Δ̂2,ℓ,𝜋ℓ )
− 1

𝐿

∑𝐿
ℓ=1

Δ̂2,ℓ,𝜋ℓ

=

√
𝐿( 1

𝐿

∑𝐿
ℓ=1

Δ1,ℓ,𝜋ℓ + 𝛽0

1

𝐿

∑𝐿
ℓ=1

Δ2,ℓ,𝜋ℓ ) +
√
𝐿 1

𝐿

∑𝐿
ℓ=1
(𝜖Δ1,ℓ,𝜋ℓ + 𝛽0𝜖Δ2,ℓ,𝜋ℓ )

− 1

𝐿

∑𝐿
ℓ=1

Δ̂2,ℓ,𝜋ℓ

=

√
𝐿(−𝛽0

1

𝐿

∑𝐿
ℓ=1

Δ2,ℓ,𝜋ℓ + 𝛽0

1

𝐿

∑𝐿
ℓ=1

Δ2,ℓ,𝜋ℓ ) + 1√
𝐿

∑𝐿
ℓ=1
𝑢ℓ,𝜋ℓ

− 1

𝐿

∑𝐿
ℓ=1

Δ̂2,ℓ,𝜋ℓ

=

1√
𝐿

∑𝐿
ℓ=1
𝑢ℓ,𝜋ℓ

− 1

𝐿

∑𝐿
ℓ=1

Δ2,ℓ,𝜋ℓ − 1

𝐿

∑𝐿
ℓ=1
𝜖Δ2,ℓ

=

1√
𝐿𝜇𝐿𝑐𝜋

∑𝐿
ℓ=1
𝑢ℓ,𝜋ℓ

− 1

𝐿𝜇𝐿𝑐𝜋

∑𝐿
ℓ=1

Δ2,ℓ,𝜋ℓ − 1

𝐿𝜇𝐿𝑐𝜋

∑𝐿
ℓ=1
𝜖Δ2,ℓ

.

where in the last line numerator and denominator are divided by 𝜇𝐿𝑐𝜋 , different from zero by

Assumptions 5.3 and 5.4.

Consider the triangular array

{𝑢𝐿,ℓ,𝜋ℓ :=
𝑢ℓ,𝜋ℓ

𝜇𝐿𝑐𝜋
: 1 ≤ ℓ ≤ 𝐿}.

By Lemma 8, each term 𝑢𝐿,ℓ,𝜋ℓ has mean zero and uniformly bounded 2 + 𝛿 moments. Hence, by

the Lyapunov Central Limit Theorem for triangular arrays,

1

√
𝐿

𝜇𝐿𝑐𝜋

𝜎𝑢,𝐿,𝜋

𝐿∑︁
ℓ=1

𝑢ℓ,𝜋ℓ

𝜇𝐿𝑐𝜋

𝑑−→ N(0, 1).

Recall that 𝜎𝑢,𝐿,𝜋 =

√︃
1

𝐿

∑𝐿
ℓ=1

Var(𝑢ℓ,𝜋ℓ ). Lemma 8 proves that each Var(𝑢ℓ,𝜋ℓ ) does not depend on

the labeling of the corresponding cycle, and hence neither 𝜎𝑢,𝐿,𝜋 does.
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Hence consider:

√
𝐿
𝜇𝐿𝑐𝜋

𝜎𝑢,𝐿,𝜋

(
ˆ𝛽𝐿,𝜋 − 𝛽0

)
=

1√
𝐿

𝜇𝐿𝑐𝜋
𝜎𝑢,𝐿,𝜋

∑𝐿
ℓ=1

𝑢ℓ
𝜇𝐿𝑐𝜋

− 1

𝐿𝜇𝐿𝑐𝜋

∑𝐿
ℓ=1

Δ2,ℓ,𝜋ℓ − 1

𝐿𝜇𝐿𝑐𝜋

∑𝐿
ℓ=1
𝜖Δ2,ℓ

.

and note that the argument used in Theorem 5 proves that the denominator converges to 1 almost

surely. Slutsky’s theorem hence allows to conclude

√
𝐿
𝜇𝐿𝑐𝜋

𝜎𝑢,𝐿,𝜋

(
ˆ𝛽𝐿 − 𝛽0

) 𝑑−→ N
(
0, 1

)
.

H.8 Proof of Proposition 2

Note that

𝑢ℓ,𝜋 = Δ̂1,ℓ,𝜋 + ˆ𝛽𝐿,𝜋 Δ̂2,ℓ,𝜋

= Δ1,ℓ,𝜋ℓ + 𝜖Δ1,ℓ,𝜋ℓ + ˆ𝛽𝐿,𝜋 (Δ2,ℓ,𝜋ℓ + 𝜖Δ2,ℓ,𝜋ℓ )
= Δ1,ℓ,𝜋ℓ + 𝛽0Δ2,ℓ,𝜋ℓ︸              ︷︷              ︸

=0

+ 𝜖Δ1,ℓ,𝜋ℓ + 𝛽0𝜖Δ2,ℓ,𝜋ℓ︸                ︷︷                ︸
𝑢ℓ,𝜋

+( ˆ𝛽𝐿,𝜋 − 𝛽0)Δ̂2,ℓ,𝜋

and hence

𝑢2

ℓ,𝜋 = 𝑢2

ℓ,𝜋 + 2𝑢ℓ,𝜋 ( ˆ𝛽𝐿,𝜋 − 𝛽0)Δ̂2,ℓ,𝜋 + ( ˆ𝛽𝐿,𝜋 − 𝛽0)2Δ̂2

2,ℓ,𝜋 .

Since 𝜎2

𝑢,𝐿
= 1

𝐿

∑𝐿
ℓ=1
𝑢2

ℓ,𝜋ℓ
, to prove the result I need to prove that

1

𝐿

𝐿∑︁
ℓ=1

(
2𝑢ℓ,𝜋 ( ˆ𝛽𝐿,𝜋 − 𝛽0)Δ̂2,ℓ,𝜋 + ( ˆ𝛽𝐿,𝜋 − 𝛽0)2Δ̂2

2,ℓ,𝜋

)
=

=( ˆ𝛽𝐿,𝜋 − 𝛽0)
1

𝐿

𝐿∑︁
ℓ=1

(
2𝑢ℓ,𝜋 Δ̂2,ℓ,𝜋

)
+ ( ˆ𝛽𝐿,𝜋 − 𝛽0)2

𝐿∑︁
ℓ=1

(
Δ̂2

2,ℓ,𝜋

)
𝑝
−→ 0.

Assumption 5 and Theorem 5 guarantee ( ˆ𝛽𝐿,𝜋 − 𝛽0) = 𝑜𝑝 (1), 1

𝐿

∑𝐿
ℓ=1
𝑢ℓ,𝜋 Δ̂2,ℓ,𝜋 = 𝑂𝑝 (1), and

1

𝐿

∑𝐿
ℓ=1

Δ̂2

2,ℓ,𝜋 = 𝑂𝑝 (1), and hence the result follows.
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H.9 Proof of Proposition 3

Define 𝐴ℓ := (𝛼𝑖ℓ − 𝛼𝑖′ℓ ) (𝜓 𝑗ℓ −𝜓 𝑗 ′ℓ ). It suffices to show that there exists a constant 𝑐𝜋 with |𝑐𝜋 | >
𝐶𝜋 > 0 such that

𝜇𝐿𝑐𝜋 −
1

𝐿

𝐿∑︁
ℓ=1

𝐴ℓ𝜋
𝛼
ℓ,𝑧𝜋

𝜓

ℓ,𝑧
→𝑎.𝑠 .

0,

and that the collection {𝜋𝛼
ℓ,𝑧
, 𝜋

𝜓

ℓ,𝑧
}𝐿ℓ=1

is independent of the error terms {𝜂𝑖 𝑗 }.
First, the instruments 𝒛𝜶 and 𝒛𝝍 are deterministic. Hence, the induced signs {𝜋𝛼

ℓ,𝑧
, 𝜋

𝜓

ℓ,𝑧
}, being

deterministic functions of the instruments, are independent of the error terms {𝜂𝑖 𝑗 }, exogenous
by Assumption 5.1.

Next, note that

1

𝐿

𝐿∑︁
ℓ=1

(𝐴ℓ − 𝜇𝐿) (𝜋𝛼ℓ,𝑧𝜋
𝜓

ℓ,𝑧
− 𝜋𝛼𝜋𝜓 ) = 1

𝐿

𝐿∑︁
ℓ=1

𝐴ℓ𝜋
𝛼
ℓ,𝑧𝜋

𝜓

ℓ,𝑧
− 𝜇𝐿𝜋𝛼𝜋𝜓 ,

so that

1

𝐿

𝐿∑︁
ℓ=1

𝐴ℓ𝜋
𝛼
ℓ 𝜋

𝜓

ℓ
=

1

𝐿

𝐿∑︁
ℓ=1

(𝐴ℓ − 𝜇𝐿) (𝜋𝛼ℓ,𝑧𝜋
𝜓

ℓ,𝑧
− 𝜋𝛼𝜋𝜓 ) + 𝜇𝐿𝜋𝛼𝜋𝜓 .

Similarly,

1

𝐿

𝐿∑︁
ℓ=1

(𝜋𝛼ℓ,𝑧 − 𝜋𝛼 ) (𝜋
𝜓

ℓ,𝑧
− 𝜋𝜓 ) = 𝜋𝛼𝜋𝜓 − 𝜋𝛼𝜋𝜓 ,

which implies

𝜋𝛼𝜋𝜓𝐿 =
1

𝐿

𝐿∑︁
ℓ=1

(𝜋𝛼ℓ,𝑧 − 𝜋𝛼 ) (𝜋
𝜓

ℓ,𝑧
− 𝜋𝜓 ) + 𝜋𝛼𝜋𝜓 .

Substituting this expression yields

1

𝐿

𝐿∑︁
ℓ=1

𝐴ℓ𝜋
𝛼
ℓ,𝑧𝜋

𝜓

ℓ,𝑧
=

1

𝐿

𝐿∑︁
ℓ=1

(𝐴ℓ − 𝜇𝐿) (𝜋𝛼ℓ,𝑧𝜋
𝜓

ℓ,𝑧
− 𝜋𝛼𝜋𝜓 ) + 𝜇𝐿

1

𝐿

𝐿∑︁
ℓ=1

(𝜋𝛼ℓ,𝑧 − 𝜋𝛼 ) (𝜋
𝜓

ℓ,𝑧
− 𝜋𝜓 ) + 𝜇𝐿𝜋𝛼𝜋𝜓 .

Assumption 5.2 guarantees 𝐿 → ∞. In the limit, the first term on the right-hand side is

nonnegative by Assumption 6.3; the second is nonnegative by Assumptions 6.2 and 5.3; and the

third is bounded away from zero by Assumptions 6.1 and 5.3. The entire expression is hence
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bounded away from zero as well, and Assumption 5.4 holds with 𝑐𝜋 ≥ 𝑐𝛼𝑐𝜓 .
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