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ABSTRACT
The causal inference model for the regression discontinuity design (RDD) relies on assumptions that imply the continuity of the
density of the assignment (running) variable. The test for this implication is commonly referred to as the manipulation test and is
regularly reported in applied research to strengthen the design’s validity. The multidimensional RDD (MRDD) extends the RDD
to contexts where treatment assignment depends on several running variables. This paper introduces a manipulation test for the
MRDD. First, it develops a theoretical model for causal inference with the MRDD, which is used to derive a testable implication
on the conditional marginal densities of the running variables. Then, it constructs the test for the implication based on a quadratic
form of a vector of statistics separately computed for each marginal density. Finally, the proposed test is compared with alternative
procedures commonly employed in applied research.
JEL Classification: C12, C14

1 | Introduction

Regression discontinuity design (RDD) is widely used in pol-
icy evaluation and causal inference analysis to establish credible
causal relationships under mild assumptions. RDD requires that
units are assigned to a treatment based on some observable char-
acteristic, the running variable: the probability of being treated
must discontinuously change when the value of the running vari-
able exceeds a certain threshold, called the cutoff. The fact that
policies are often designed in this way (scholarship for students
with GPA exceeding a threshold, welfare benefits for households
with a certain income, etc.) explains RDD popularity.1

To identify the average treatment effect at the cutoff, the causal
inference model for the RDD proposed by Lee (2008) relies on
assumptions about unobservable potential outcomes. Although
these assumptions are not directly testable, the model implies two
testable conditions on observable quantities. The first condition
requires continuity at the cutoff for the probability density func-
tion of the running variable, as discussed by McCrary (2008). The
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second condition imposes continuity at the cutoff for the con-
ditional expectation (given the running variable) of additional
observable characteristics measured before treatment. Tests of
these conditions provide evidence supporting the validity of the
RDD and are commonly reported in empirical applications, as
highlighted in the survey by Canay and Kamat (2018). The test
for the continuity of the running variable’s density is commonly
referred to as the manipulation test, as it checks whether units
manipulate their scores to secure treatment assignments. Several
manipulation tests have been proposed in the literature, starting
with the seminal work by McCrary (2008) and followed by more
recent approaches, such as those by Cattaneo et al. (2020) and
Bugni and Canay (2021).

This paper introduces a manipulation test for the multidimen-
sional RDD (MRDD), valid for both cases of perfect (sharp
MRDD) and imperfect (fuzzy MRDD) compliance. MRDD is
a model where the treatment assignment depends on multi-
ple running variables. I consider the version of MRDD where
the probability of receiving the treatment changes discontinu-
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FIGURE 1 | MRDD running variables and thresholds. Source:
Cattaneo et al. (2024).

ously when all the running variables exceed their cutoffs, and
the cutoff of each running variable is fixed.2 Compared to the
single-dimensional RDD, the main novelty is that the cutoff is not
a point in a single-dimensional space but a set of infinite points
in the multidimensional space of the running variables. Consider,
for example, a scholarship for students who score above certain
thresholds in language and mathematics tests, as illustrated in
Figure 1. The MRDD allows the researcher to identify and esti-
mate the average effect of the scholarship on students with scores
at the boundary. In this case, the cutoff is the solid purple bound-
ary in the bidimensional space of language and math scores.

The main contributions of this paper are as follows: First, I
extend the model of Lee (2008) to a multidimensional setting
and demonstrate how one of the model’s assumptions on unob-
servable quantities leads to a testable implication for the condi-
tional marginal densities of the running variables, analogous to
the condition proposed by McCrary (2008) for the density of the
single running variable.

Second, I construct a manipulation test for this condition to
help corroborate the credibility of the MRDD. Intuitively, the
test procedure divides the space of running variables into sub-
spaces where each running variable individually determines the
treatment assignment. In each subspace, the model’s implication
requires the marginal density of the single running variable to be
continuous at its respective threshold. This leads to a set of con-
ditions on the continuity of the conditional marginal densities of
all running variables, and I propose a multidimensional manip-
ulation test based on a quadratic form of the test statistics intro-
duced by Cattaneo et al. (2020) for the single-dimensional case,
computed for each condition. Asymptotically, these statistics con-
verge to a multivariate normal distribution, and the proposed test
statistic converges to a chi-square distribution with degrees of
freedom equal to the number of running variables.

Finally, I compare my procedure with alternative methods, pro-
viding a review of other approaches commonly used in the
literature.

I am not the first to study MRDD from a theoretical perspec-
tive. Identification and estimation in the MRDD setting, and how
they differ from the single-dimensional RDD, have been inves-
tigated by Imbens and Zajonc (2009) and Papay et al. (2011),

respectively; other results are also discussed in Wong et al. (2013)
and Imbens and Wager (2019). So far, to my knowledge, there
is no research explicitly dealing with extending the framework
proposed by Lee (2008) and discussing manipulation tests in the
MRDD context. Interestingly, though, manipulation tests are run
by several applied papers employing MRDD (see the survey in
Table 1): They appeal to disparate approaches, with different
null hypotheses, assumptions, and test statistics. None of these
approaches justifies the implemented procedures,3 while my test
is supported by a model and backed by statistical theory. Local
asymptotic analysis and Monte Carlo simulations confirm my
test’s advantages in terms of size control and power in realistic
settings.

Three main strands of literature resort to MRDD as a tool for
causal inference. First, it is exploited to evaluate policies that
assign a treatment when more than one condition on observ-
able continuous quantities is met. Examples can be found in
several fields, mainly in education (Matsudaira 2008; Clark and
Martorell 2014; Cohodes and Goodman 2014; Elacqua et al. 2016;
Evans 2017; Smith et al. 2017; Londoño-Vélez et al. 2020) but
also in corporate finance (Becht et al. 2016), political econ-
omy (Hinnerich and Pettersson-Lidbom 2014; Frey 2019), devel-
opment (Salti et al. 2022), industrial organization (Snider and
Williams 2015), and public economics (Egger and Wamser 2015).
In these cases, MRDD provides reliable results on treatment
effects from a clean identification strategy.

A second application is the geographic or spatial RDD to study the
effect of treatments only assigned to specific areas. Running vari-
ables are latitude and longitude, and the boundary at which the
ATE is computed coincides with actual (or historical) national,
regional, or municipal borders. Keele and Titiunik (2015) discuss
how this setting relates to MRDD in detail. Note, however, that
I am considering a model where the treatment is assigned when
each running variable exceeds its cutoff: As such, my results do
not directly apply to the spatial RDD, and if my test works in this
setting, it is a case-specific issue.

Third, recently there has been an increasing interest in MRDD
in a theory literature at the intersection of market design
and machine learning (Abdulkadiroglu et al. 2022; Narita and
Yata 2021). When algorithms determine a treatment assignment,
they may consider multiple thresholds and running variables in
a setting that mimics an MRDD. This literature is primarily theo-
retical, but it will likely encourage new empirical research, poten-
tially relying on my proposed MT.

The rest of the paper is organized as follows. Section 2 intro-
duces the theoretical model for MRDD and derives the testable
implication. Section 3 provides a manipulation test for the impli-
cation. Section 4 compares the manipulation test with alterna-
tive approaches used in the literature. Section 5 reports Monte
Carlo simulations. Section 6 applies the manipulation test to
Frey (2019). Section 7 concludes.
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TABLE 1 | Published papers using MRDD. Most studies utilize either separate tests (ST), where each running variable’s density continuity is tested
individually, or distance as running variable tests (DT), which consider the distance of observations from the boundary as the unique running variable.

Authors (year) Manipulation test ST DT

Frey (2019) ×
Matsudaira (2008) ✓ ✓
Hinnerich and Pettersson-Lidbom (2014) ✓ ✓
Elacqua et al. (2016) ✓ ✓
Egger and Wamser (2015) ✓ ✓
Evans (2017) ✓ ✓
Smith et al. (2017) ✓ ✓
Londoño-Vélez et al. (2020) ✓ ✓
Clark and Martorell (2014) ✓ ✓
Cohodes and Goodman (2014) ✓ ✓
Becht et al. (2016) ✓ ✓

2 | Model and Testable Implication

In this section, I outline the model for the MRDD and present
the testable implication for the manipulation test in the multidi-
mensional setting. This model extends some of the results previ-
ously proposed by Lee (2008) and McCrary (2008) to the multi-
dimensional case. The comprehensive discussion of the model,
including identification results and analysis of various multidi-
mensional RD designs, is provided in Appendix S1.

Let 𝑍 ∈ ℝ𝑑 be a random vector consisting of 𝑑 observable con-
tinuous running variables, with a joint cumulative distribution
function 𝐹 (𝑧) and a joint probability density function 𝑓 (𝑧).

The treatment status 𝐷 depends on 𝑍. This paper focuses on a
sharp design, where the treatment status is deterministic. How-
ever, the framework can also be extended to a fuzzy design, where
the probability of receiving treatment changes discontinuously
at the threshold. Consider a multiple-threshold treatment rule,
where units receive the treatment (𝐷 = 1) if all running variables
exceed their respective cutoffs:

𝐷 = 𝐷(𝑍) = 𝟏{𝑍 ≥ 𝑐} = 𝟏{𝑍1 ≥ 𝑐1}𝟏{𝑍2 ≥ 𝑐2} … 𝟏{𝑍
𝑑
≥ 𝑐

𝑑
}

(1)
Without loss of generality, assume a rescaling of 𝑍 such that 𝑐

𝑗
=

0 for all 𝑗. In this case, units are treated if, and only if, 𝑍
𝑗
≥ 0 for

all 𝑗.

Let  denote the set of values of𝑍 for which𝐷(𝑍) = 1, and let  𝐶

represent the closure of the complement of  . Define the bound-
ary as the set of points with both treated and untreated units in
any neighborhood: formally,  =  ∩  𝐶 .

The MRDD leverages the treatment assignment mechanism
described in Equation (1) to identify the causal effect of the treat-
ment at the boundary, where treated and untreated units are com-
parable and differ only in their treatment status. In Appendix S1,
I formally discuss the assumptions under which different causal
parameters can be identified. These parameters include the con-
ditional average treatment effect (CATE), the average treatment
effect at a specific point on the boundary, and the integrated

CATE (ICATE), which summarizes the average effect along the
entire boundary.

I then demonstrate how one of the key assumptions for identifi-
cation leads to a testable implication for the observable distribu-
tion of 𝑍, analogous to the condition derived by McCrary (2008)
in the single running variable case. This implication, formalized
as Proposition 4 in Appendix S1.3, is presented in the following
proposition.

Testable Implication 1 (Continuity of the conditional marginal
densities). To identify the CATE, the MRDD relies on assump-
tions with the following implication:

𝑓
𝑍
𝑗
|𝑍−𝑗

(𝑧
𝑗
|𝑧−𝑗 ≥ 0) continuous at 𝑧

𝑗
= 0,∀𝑗 (2)

where

𝑓
𝑍
𝑗
|𝑍−𝑗

(𝑧
𝑗
|𝑧−𝑗 ≥ 0) =

∫
𝑧−𝑗≥0 𝑓𝑍𝑗

,𝑍−𝑗
(𝑧

𝑗
, 𝑧−𝑗)𝑑𝑧−𝑗

∫
𝑧−𝑗≥0 𝑓𝑍−𝑗

(𝑧−𝑗)𝑑𝑧−𝑗

denotes the conditional probability density function of the run-
ning variable 𝑍

𝑗
, conditional on all the other running variables

𝑍−𝑗 = (𝑍1, … , 𝑍
𝑗−1, 𝑍𝑗+1, … , 𝑍

𝑑
) being larger than 0.

The implication in Equation (2) requires the continuity at the
boundary of the conditional marginal density of each running
variable. This condition is equivalent to the continuity of the
marginal density of each random variable 𝑗 at its threshold (𝑧

𝑗
=

0), given that all other running variables exceed their respective
cutoffs (𝑧−𝑗 ≥ 0). In terms of restrictions on agents’ behavior, this
implication rules out any influence over individual running vari-
ables that would change the treatment status at the boundary.

The implication is derived by combining the multiple-threshold
assignment rule with the assumption that units on either side
of the boundary are comparable. As a result, it does not depend
on the specific parameter of interest (e.g., CATE or ICATE) or
the estimation strategy chosen by the researcher. Consequently,
the derivation remains valid even in scenarios that deviate from
the baseline model, as long as the treatment is assigned using

3 of 12

 10991255, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.3135 by N

orthw
estern U

niversity L
ibraries, W

iley O
nline L

ibrary on [12/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



rules analogous to Equation (1). For example, the implication also
holds in the case studied by Papay et al. (2011), where two run-
ning variables define four distinct treatment regions, each char-
acterized by a combination of threshold rules.

In the next section, I propose a manipulation test for the implica-
tion in Equation (2), which stems from the assumption required
for identification in the MRDD. This manipulation test should be
regarded as a robustness check and, in any specific application,
should complement rather than replace a thorough discussion of
the validity of the MRDD assumptions.

3 | Manipulation Test

In this section, I first introduce the manipulation test for the
implication in Equation (2), presenting the test statistic and the
critical values. Practitioners interested in applying the manipula-
tion test will find a practical description of how to implement the
procedure. Then, in Section 3.1, I discuss the assumptions nec-
essary to establish the asymptotic validity and consistency of the
test. Finally, in Section 3.2, I derive the formal results.

The MRDD manipulation test I propose for the implication in
Equation (2) is defined as follows:

𝜙(𝑡, 𝛼) =

{
1, if 𝑡 > 𝑐(𝛼),
0, if 𝑡 ≤ 𝑐(𝛼),

(3)

where 𝑡 is the test statistic, 𝛼 the significance level, and 𝑐(𝛼) the
critical value. Whenever 𝜙(𝑡, 𝛼) equals 1, the null hypothesis is
rejected.

The construction of the test statistic 𝑡 involves two steps. First,
for each running variable 𝑗, compute the statistic �̂�

𝑗
along with

its variance estimator �̂�2
𝑗
. The expression for �̂�

𝑗
is given by

�̂�
𝑗
= 𝑓

+
𝑍
𝑗
|𝑍−𝑗

(0|𝑧−𝑗 ≥ 0) − 𝑓
−
𝑍
𝑗
|𝑍−𝑗

(0|𝑧−𝑗 ≥ 0),

where 𝑓
+
𝑍
𝑗
|𝑍−𝑗

and 𝑓
−
𝑍
𝑗
|𝑍−𝑗

are estimators of the conditional
marginal density of 𝑍

𝑗
, as defined in Section 3.1. It is worth

noting that �̂�
𝑗

resembles the test statistic proposed by Cattaneo
et al. (2020) for testing the continuity of the density in a
single-dimensional RDD. However, in this context, the test
focuses on the continuity of a conditional marginal density, which
requires adaptations for the statistic and the formal proofs.

In practice, �̂�
𝑗

and �̂�
𝑗

can be computed as follows: for any 𝑗 =
1, … , 𝑑, consider the subsample of data that includes only obser-
vations where 𝑍−𝑗 ≥ 0. Within this subsample, use available
packages in R and Stata to run the manipulation test proposed by
Cattaneo et al. (2020) and obtain the test statistic �̂�

𝑗
along with its

standard error estimator �̂�
𝑗
.

Next, construct the test statistic 𝑡 based on the vector �̂� =
(�̂�1, … , �̂�

𝑑
) and the diagonal matrix Σ̂ = diag(�̂�2

1, … , �̂�
2
𝑑
), using

the quadratic form:

𝑡 = �̂�
′Σ̂−1

�̂� (4)

In Section 3.2, I derive the asymptotic distribution of �̂� and prove
that the test statistic 𝑡 converges to a 𝜒

2 distribution with 𝑑

degrees of freedom. Consequently, the critical value 𝑐(𝛼) can be
chosen as the 1 − 𝛼 quantile of a 𝜒2 distribution with 𝑑 degrees
of freedom.

With these test statistics and critical value, the manipulation
test 𝜙(𝑡, 𝛼) is asymptotically valid and consistent for the null
hypothesis in Equation (2).

3.1 | Assumptions

To prove the properties of the manipulation test, the following
assumption is required.

Assumption 1. (Smoothness). {𝑧
𝑖
}
𝑖∈{1,… ,𝑛} is an iid ran-

dom sample of 𝑍 with cumulative distribution function 𝐹 . In
neighborhoods of points on the boundary , 𝐹 is at least four
times continuously differentiable.

The assumption that 𝐹 has at least four continuous deriva-
tives allows for consistent estimation of the conditional densi-
ties 𝑓+

𝑍
𝑗
|𝑍−𝑗

(0) and 𝑓−
𝑍
𝑗
|𝑍−𝑗

(0). This is analogous to the assumption
required by the manipulation test of McCrary (2008) for the
single-dimensional case.

To simplify the notation, define 𝑓
𝑗
(𝑧

𝑗
) = 𝑓

𝑍
𝑗
|𝑍−𝑗

(𝑧
𝑗
|𝑧−𝑗 ≥ 0), and

consider the local polynomial estimator 𝑓
𝑗,𝑝
(𝑧

𝑗
):

𝑓
𝑗,𝑝
(𝑧

𝑗
) = 𝑒

′
1𝛽(𝑧𝑗),

𝛽(𝑧
𝑗
) = argmin

𝑏∈ℝ𝑝+1

𝑛∑

𝑖=1
[
𝐹
𝑗
(𝑧

𝑗
|𝑧−𝑗 ≥ 0) − 𝑟

𝑝
(𝑧

𝑗𝑖
− 𝑧

𝑗
)′𝑏

]2

𝐾

(
𝑧
𝑗𝑖
− 𝑧

𝑗

ℎ
𝑗

)

𝟏{𝑧−𝑗 ≥ 0},

where 𝑒′1 ∈ ℝ𝑝+1 such that 𝑒′1 = (0, 1, 0, … , 0); 𝑛
𝑗
=

∑𝑛

𝑖=1𝟏{𝑧−𝑗 ≥
0} is the number of observations actually considered for the
test; 𝐹

𝑗
(𝑧

𝑗
|𝑧−𝑗 ≥ 0) = 1

𝑛
𝑗

∑
𝑖
𝟏{𝑧

𝑗𝑖
≤ 𝑧

𝑗
}𝟏{𝑧−𝑗𝑖 ≥ 0} is the empiri-

cal distribution function for the marginal conditional distribu-
tion 𝐹 (𝑧

𝑗
|𝑧−𝑗 ≥ 0); 𝑟

𝑝
(𝑢) = (1, 𝑢, 𝑢2

, … , 𝑢
𝑝) is a one-dimensional

polynomial expansion; ℎ
𝑗

is a bandwidth, which will be better
specify later; and𝐾(⋅) is a kernel function satisfying the following
assumption.

Assumption 2. (Kernel). The kernel function 𝐾(.) is
nonnegative, symmetric, continuous, and integrates to one:
∫ 𝐾(𝑢)𝑑𝑢 = 1. It has support [−1, 1].

The local polynomial approach for estimating derivatives of
the cumulative distribution function is extensively discussed in
Cattaneo et al. (2020), although it was mentioned already by
Jones (1993). Chapter 3 of Fan and Gijbels (1996) examines sev-
eral properties of the local polynomial estimator that make it par-
ticularly well suited for the manipulation test. Notably, it achieves
the optimal rate of convergence both at interior points and bound-
aries, while being boundary-adaptive. No adjustments are needed
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when estimating points near the boundary if the object of interest
is the 𝜈th derivative and 𝑝 − 𝜈 is odd. For my MT, where 𝜈 = 1,
I employ an estimator with 𝑝 = 2 to take full advantage of its
boundary adaptiveness.

3.2 | Manipulation Test

To establish asymptotic validity and consistency of the test𝜙(𝑡, 𝛼),
it is necessary to derive some intermediate results. The first
result regards the asymptotic properties of the density estima-
tor 𝑓

𝑗,𝑝
(𝑧

𝑗
). Formulas for bias𝐵(𝑥), variance 𝑉 (𝑥), and consistent

variance estimator 𝑉 (𝑥) are reported in Appendix S2.

Proposition 1. (Asymptotic distribution of 𝑓
𝑗,𝑝
(𝑧

𝑗
)).

Under Assumptions 1 and 2 , with 𝑝 = 2, 𝑛ℎ2
𝑗
→∞ and 𝑛ℎ

2𝑝+1
𝑗

=
𝑂(1), 𝑓

𝑗,𝑝
(𝑧

𝑗
) is a consistent estimator for 𝑓

𝑗
(𝑧

𝑗
) . Furthermore,

√

𝑛
𝑗
ℎ
𝑗
(𝑓

𝑗,𝑝
(𝑧

𝑗
) − 𝑓

𝑗
(𝑧

𝑗
) − ℎ

𝑝

𝑗
𝐵(𝑧

𝑗
)) →𝑑

 (0, 𝑉 (𝑧
𝑗
))

where 𝐵(𝑧
𝑗
) is the asymptotic bias and 𝑉 (𝑧

𝑗
) the asymptotic vari-

ance.

When 𝑛ℎ2𝑝+1
𝑗

= 𝑂(1), the bandwidth ℎ
𝑗

has the MSE-optimal rate
and can be computed by cross-validation.

The presence of asymptotic bias 𝐵(𝑧
𝑗
) is standard in non-

parametric settings and must be considered to ensure valid
hypothesis testing. In this paper, I adopt the robust bias cor-
rection method proposed by Calonico et al. (2018). Alternative
approaches include the critical values correction method sug-
gested by Armstrong and Kolesár (2020).

Bias-corrected inference for the density estimator 𝑓
𝑗,𝑝
(𝑧

𝑗
) can

be obtained by considering the estimator 𝑓
𝑗,𝑞
(𝑧

𝑗
) with 𝑞 = 𝑝 + 1,

computed with the bandwidth ℎ
𝑗,𝑝

, the MSE-optimal bandwidth
for 𝑓

𝑗,𝑝
(𝑧

𝑗
) (see Calonico et al. (2022) and Cattaneo et al. (2022)

for an extensive discussion on the procedure). Moving forward,
I will consider the estimator 𝑓

𝑗,𝑝
(𝑧

𝑗
) for point estimates and the

estimator 𝑓
𝑗,𝑞
(𝑧

𝑗
)with bandwidth ℎ

𝑗,𝑝
to construct bias-corrected

confidence intervals for 𝑓
𝑗,𝑝
(𝑧

𝑗
).

Let 𝑛
𝑗+ =

∑𝑛

𝑖=1𝟏{𝑧𝑗 ≥ 0}𝟏{𝑧−𝑗 ≥ 0} and 𝑛
𝑗− =

∑𝑛

𝑖=1𝟏{𝑧𝑗 <
0}𝟏{𝑧−𝑗 ≥ 0}, and denote by 𝑛

𝑗+

𝑛
𝑗

𝑓
𝑗+,𝑝(𝑧𝑗) and 𝑛

𝑗−

𝑛
𝑗

𝑓
𝑗−,𝑝(𝑧𝑗) the

estimators of conditional density 𝑓
𝑗
(𝑧

𝑗
) = 𝑓

𝑍
𝑗
|𝑍−𝑗

(𝑧
𝑗
|𝑧−𝑗 ≥ 0)

computed considering only observations in {𝑧 ∶ 𝑧 ≥ 0} and
{𝑧 ∶ 𝑧

𝑗
< 0, 𝑧−𝑗 ≥ 0}, respectively.

Consider 𝜃
𝑗
= lim

𝑧
𝑗
→0+ 𝑓𝑗(𝑧𝑗) − lim

𝑧
𝑗
→0− 𝑓𝑗(𝑧𝑗), and note that,

when the implication in Equation (2) is true, 𝜃
𝑗
= 0 for all 𝑗.

Define the statistic �̂�
𝑗,𝑝

:

�̂�
𝑗,𝑝
=
𝑛
𝑗+

𝑛
𝑗

𝑓
𝑗+,𝑝(0) −

𝑛
𝑗−

𝑛
𝑗

𝑓
𝑗−,𝑝(0) (5)

The following result derives the asymptotic distribution of the
statistic.

Proposition 2. (Asymptotic distribution of �̂�
𝑗,𝑞

).
Under Assumptions 1 and 2 holding separately for {𝑍 ∶ 𝑍

≥ 0} and {𝑍 ∶ 𝑍−𝑗 ≥ 0, 𝑍
𝑗
< 0}, with 𝑝 = 2, 𝑞 = 𝑝 +

1, 𝑛min{ℎ
𝑗−, ℎ𝑗+} →∞, and 𝑛max{ℎ1+2𝑞

𝑗− , ℎ
1+2𝑞
𝑗+ } → 0, when

the implication 𝜃
𝑗
= 0 is true:

1
𝜎
𝑗

�̂�
𝑗,𝑞
→𝑑
 (0, 1)

where

𝜎
2
𝑗
=

𝜋
𝑗+

ℎ
𝑗+𝜋𝑗𝑛

𝑉
𝑗+(0) +

𝜋
𝑗−

ℎ
𝑗−𝜋𝑗𝑛

𝑉
𝑗−(0).

A consistent estimator �̂�2
𝑗

for 𝜎2
𝑗

can be obtained by

�̂�
2
𝑗
=

𝑛
𝑗+

ℎ
𝑗+𝑛

2
𝑗

𝑉
𝑗+,𝑞(0) +

𝑛
𝑗−

ℎ
𝑗−𝑛

2
𝑗

𝑉
𝑗−,𝑞(0).

Proposition 2 is valid for any 𝑗. I am interested in the asymptotic
distribution of the vector �̂� = (�̂�1, �̂�2, … , �̂�

𝑑
), whose distribution

under the null hypothesis of continuity of 𝑓
𝑍
𝑗
|𝑍−𝑗

(𝑧
𝑗
|𝑧−𝑗 ≥ 0) is

derived in the next theorem.

Theorem 1. (Asymptotic distribution of �̂�). Under
Assumptions 1 and 2 holding separately for {𝑍 ∶ 𝑍 ≥ 0} and
{𝑍 ∶ 𝑍−𝑗 ≥ 0, 𝑍

𝑗
< 0} for all 𝑗, with 𝑝 = 2, 𝑞 = 𝑝 + 1, 𝑛min

{ℎ
𝑗−, ℎ𝑗+}→ ∞ and 𝑛max{ℎ1+2𝑞

𝑗− , ℎ
1+2𝑞
𝑗+ } → 0 for all 𝑗, when

𝜃 = 0,
Σ̂−

1
2 �̂� →𝑑

 (0, 𝐼),

where Σ̂
𝑗𝑗
= �̂�

2
𝑗

as defined in Proposition 2 , and Σ̂
𝑗𝑖
= 0 for all 𝑖 ≠ 𝑗

.

Theorem 1 shows that, even if the number of observations simul-
taneously considered by any pair of estimators 𝜃

𝑗
and 𝜃

𝑖
goes to

infinite, they are asymptotically independent.

The asymptotic distribution of the quadratic form test statistic 𝑡
defined in Equation (4) is immediately derived from Theorem 1.
The quadratic form is, in fact, a continuous function of Σ̂−

1
2 �̂� and

is hence distributed as the sum of 𝑑 squared independent nor-
mals: a 𝜒2 distribution with 𝑑 degrees of freedom.

Theorem 1 allows to derive the asymptotic distribution of
any continuous function of the vector Σ̂−

1
2 �̂�. To test the null

hypothesis in Equation (2), it is useful to consider the 𝓁𝑝-norm
statistic ||Σ̂−

1
2 �̂�||

𝑝
: Large values of this statistic give evidence

against the null hypothesis, suggesting to choose the critical value
𝑐(𝛼) as the 1 − 𝛼 quantile of its asymptotic distribution. The conti-
nuity of the 𝓁𝑝-norm ensures that ||Σ̂−

1
2 �̂�||

𝑝
→𝑑 ||𝑋||

𝑝
, where 𝑋 ∈

ℝ𝑑 is a random vector with distribution (0, 𝐼). In general, the
quantiles of ||𝑋||

𝑝
and hence the critical value for the test can be

obtained through simulations, drawing random samples from 𝑋

and computing ||𝑋||
𝑝
. The quadratic form can be seen as a special

case, where the Euclidean distance (𝓁2-norm) is squared to obtain
a 𝜒2 distribution whose quantiles can be analytically computed.

With these test statistics and critical values, the MRDD manipula-
tion test𝜙(𝑡, 𝛼) defined in Equation (3) is asymptotically valid and
consistent: when the null hypothesis in Equation (2) is true, the
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test has an asymptotic rejection probability of 𝛼. When the null
hypothesis is false, the test asymptotically rejects with probability
one. The following corollary formalizes this result.

Corollary 1. (Manipulation Test). Let 𝐻0 be the null
hypothesis in Equation (2), and consider the MT 𝜙(𝑡, 𝛼) defined in
Equation (3) with the test statistic 𝑡 defined in Equation (4) and as
critical value 𝑐(𝛼) the 1 − 𝛼 quantile of the 𝜒2 distribution. Under
the assumptions of Theorem 1 , when 𝐻0 is true:

lim
𝑛→∞

𝑃 (𝜙(𝑡, 𝛼) = 1) = 𝛼.

When 𝐻0 is false:

lim
𝑛→∞

𝑃 (𝜙(𝑡, 𝛼) = 1) = 1.

In the next section, the MT is compared to some alternatives used
in the literature, studying its finite sample properties in terms of
power and size control.

Remark 1. (Choice of the test statistic). The manipula-
tion test is asymptotically valid and consistent for any 𝓁𝑝-norm
test statistic, with 𝑝 > 0. Different 𝓁𝑝-norms imply differences
in power against different alternatives. The quadratic form test
statistic with 𝑝 = 2 performs well in detecting discontinuities dif-
fused across all running variables. These behaviors are of primary
interest: When the treatment’s benefits lead agents to manipu-
late their running variables for eligibility, manipulation is likely
widespread. In contrast, if only one running variable is manipu-
lated, other test statistics may be more appropriate. For this case,
I discuss the 𝓁∞-norm statistic, equivalent to the max-statistic

𝑡
𝑚
= max

(
|
|
|

�̂�1
�̂�1

|
|
|
, … ,

|
|
|
|

�̂�
𝑑

�̂�
𝑑

|
|
|
|

)

, in Appendix S3.2.

4 | Alternative Approaches

It is common for applied papers utilizing the RDD to include
manipulation tests for their running variables, as highlighted in
the survey by Canay and Kamat (2018). Although a theoretical
foundation for manipulation tests in the multidimensional case
is lacking, Table 1 demonstrates the prevalence of such tests in
papers employing the MRDD. These papers typically use one of
two approaches: conducting multiple tests, one for each running
variable separately (separate tests [ST]), or aggregating the run-
ning variables by considering the distance of each observation
from the boundary and then running the MT using the distance as
a single running variable (distance as running variable test [DT]).

The ST approach does not control the size for the null hypothesis
in Equation (2), while the DT approach is not consistent against
certain alternatives and is not robust to changes in the units
of measurement. In the following sections, I compare these
approaches with the proposed manipulation test [MT], highlight-
ing their limitations and demonstrating how they can be adapted
to properly test the null hypothesis in Equation (2).

It is important to emphasize that the primary goal of this compar-
ison is not to evaluate different test statistics but to demonstrate
how each test statistic can be adapted to the multidimensional

setting and to analyze the advantages and drawbacks of each
adaptation. In other words, the goal is not to determine whether
the test statistic based on the local polynomial estimator of the
derivatives of the empirical distribution function, proposed by
Cattaneo et al. (2020) and discussed in the previous section, is
superior to those based on histogram smoothing (McCrary 2008)
or order statistics (Bugni and Canay 2021). Such a comparison
would not specifically address the multidimensional setting and
is therefore outside the scope of this extension.

Instead, the goal is to compare different procedures (the one I pro-
posed, multiple hypothesis tests, and tests based on the distance
from the boundary) for the MT in the MRDD that could be imple-
mented using various test statistics. To ensure that the observed
differences are attributable to the procedures rather than the test
statistic itself, all tests in this analysis are specified using the test
statistic proposed by Cattaneo et al. (2020). However, they could
also be implemented with alternative test statistics, such as those
proposed by McCrary (2008) or Bugni and Canay (2021).

4.1 | Separate Tests (ST)

The ST procedure in the context of MRDD treats each run-
ning variable separately and applies existing MTs designed for
single-dimensional RDD (McCrary 2008; Cattaneo et al. 2020;
Bugni and Canay 2021). In some cases (Egger and Wamser 2015;
Evans 2017; Londoño-Vélez et al. 2020), the test is conducted on
the conditional marginal densities by considering only the units
that meet the threshold for the other running variables. Either
way, without accounting for multiple hypotheses testing, the ST is
invalid, as it does not control the size for the null in Equation (2).

4.2 | Multiple Hypotheses Test With
Bonferroni Correction (BCT)

A straightforward fix for the ST is to account for multiple
hypotheses testing using Bonferroni correction (BCT). In case
the test by Cattaneo et al. (2020) is employed, the resulting
procedure partly overlaps with the test I proposed. To test the
implication in Equation (2) at level 𝛼, statistics �̂�

𝑗
defined in

Equation (5) are used to conduct ST for each running variable,
with the critical values adjusted for multiple testing (for a review
on multiple hypotheses testing, see Chapter 9 in Lehmann and
Romano (2022)). The null hypothesis of running variable 𝑗 con-
tinuity is tested at significance level 𝛼

𝑑
, where 𝑑 is the number

of running variables. The implication in Equation (2) is rejected
if the continuity of any of the running variables is rejected. The
correction for the number of hypotheses ensures correct cover-
age, meaning that the asymptotic family-wise error rate, which is
the probability of rejecting one or more true null hypotheses (and
hence the probability of rejecting the implication in Equation (2)
when it is true), is not greater than 𝛼.4 In this context, alterna-
tive multiple hypotheses corrections (e.g., stepwise methods or
Holm correction) would coincide with the BCT, as rejecting con-
tinuity for the density of just one running variable is equivalent
to rejecting the implication in Equation (2).

MT and BCT rely on the same vector of statistics �̂�. Local power
analysis can be used to compare the power of the two tests against
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local alternative hypotheses, letting the discontinuity of the den-
sity at the threshold get smaller as the sample size increases. I
consider a framework where all the running variables are dis-
continuous, and the discontinuity is equal to 𝑘∕

√
𝑛ℎ, such that,

asymptotically, �̂�
𝑗
→𝑑 (𝑘, 1) for all 𝑗. This framework mimics

a setting where all the running variables are manipulated to get
the treatment: If treatment is desirable (or undesirable), I expect
all the agents close to the treatment region to manipulate their
running variables to get in (or out) the region.

Figure 2 reports power curves for MT (in red) and BCT (in blue),
considering different numbers of running variables 𝑑 ∈ {2, 5, 8}.
When all running variables exhibit discontinuity, MT outper-
forms BCT in terms of power. This is because MT combines
information from all the running variables and effectively detects
manipulation when it is widespread across them. On the other
hand, BCT considers each running variable separately, which
results in lower power in case of widespread manipulation.

The local power analysis confirms that aggregating information
and testing a single hypothesis is better than testing multiple
hypotheses for the continuity of each running variable separately.
The MT is less conservative, at least against alternative hypothe-
ses where manipulation is spread across all running variables.

4.3 | Distance as Running Variable Test (DT)

The second approach for manipulation tests in the multidimen-
sional setting employed in applied research involves dimension
reduction: the MRDD is reduced to a single-dimensional design,
with the scalar distance between the vector of running variables
and the boundary  as the only running variable.5 The distance
is used to estimate the CATE, similar to the classical RDD, and
to conduct a manipulation test using one of the available tests
(McCrary 2008; Cattaneo et al. 2020; Bugni and Canay 2021).
This approach appears simple because it directly relates to the
single-dimensional RDD case. Nonetheless, it comes with some
caveats that need to be considered.

First, the choice of distance metric and measurement units can
significantly impact the test results. Different distance metrics
used to measure the distance between the running variables and
the boundary lead to different test statistics and test outcomes, as
well as different units of measurement for the running variables.
To address this second issue, one possible solution is to standard-
ize the running variables to have unit variance before conducting
the manipulation test, but this practice may worsen the properties
of the test (as shown in Monte Carlo simulations).

A second flaw of the DT is that it is inconsistent against cer-
tain fixed alternatives of the null hypothesis in Equation (2). For
instance, if there are opposite discontinuities in the marginal dis-
tributions of different running variables, and these discontinu-
ities balance each other out, the asymptotic probability that the
DT will reject the false null hypothesis in Equation (2) is equal to
𝛼, rather than one. A design where the DT test is inconsistent is
studied in Section 5.2.

Despite the lack of a clear theoretical background and the lack
of power against specific alternative hypotheses, it may still be
the case that the DT performs better than MT and BCT in con-
texts plausible in applications. However, if any, the evidence sug-
gests poorer finite sample performance for DT, as shown by Wong
et al. (2013) or in the Monte Carlo simulation in the following
section.

5 | Monte Carlo Simulation

In this section, I conduct Monte Carlo simulations to evaluate
the finite sample performance of the manipulation test (MT) pro-
posed in this paper. The MT is compared to the multiple hypothe-
ses test with the BCT6 and the single running variable test, both
with standardization to unit variance (SDT) and without it (DT),
in each case using the signed Euclidean distance from the bound-
ary as the single running variable.

Without loss of generality, the cutoff is set at 0 for all running
variables: Units are treated when all the running variables are
nonnegative. The boundary is the set of points with all nonnega-
tive coordinates and at least one coordinate equal to zero. Figure 3

FIGURE 2 | Local asymptotic power curves for the manipulation test proposed in this paper (MT, in red) and the multiple hypotheses test with
Bonferroni correction (BCT, in blue). Plots consider different numbers 𝑑 of running variables. The significance level 𝛼 = 0.1 is represented by the dotted
horizontal purple line. All the running variables are discontinuous, and the discontinuity is equal to 𝑘∕

√
𝑛ℎ, such that �̂�

𝑗
→𝑑 (𝑘, 1) for all 𝑗.
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reports a realization of the simulated samples for the four models,
illustrating the joint distribution of the running variables.

Models 1 and 2 show how the tests are comparable in controlling
the size, while Models 3 and 4 attest the better power properties
for MT discussed in Section 4.

5.1 | Models 1 and 2

Model 1. Consider 𝑑 running variables uniformly distributed:

𝑍
𝑗
∼ 𝑈 (−1, 1) for 𝑗 in {1, … , 𝑑}.

In Model 1, densities are symmetrical to the threshold, and the
density function is flat. Because the setting can be particularly
convenient for the tests, Model 2 considers densities with differ-
ent behaviors at the two sides of the boundary.

Model 2. Consider 𝑑 running variables normally distributed
and centered at 1:

𝑍
𝑗
∼ (1, 1) for 𝑗 in {1, … , 𝑑}.

Both Models 1 and 2 are simulated considering sample sizes
𝑛 ∈ {500, 2000, 5000} and total numbers of running variables 𝑑 ∈
{2, 3, 4}. The simulation results are presented in Table 2. Overall,
for all the sample sizes considered, the tests tend to underreject,
with empirical rejection rates closer to the theoretical ones for
DT and SDT. MT and BCT exhibit similar performances across
different models and parameters specification: rejection rates get
closer to asymptotic ones as the effective sample size grows, when
𝑑 decreases for a fixed 𝑛 or 𝑛 increases for a fixed 𝑑. For the same
values of parameters 𝑑 and 𝑛, underrejection is larger in Model 1
than Model 2: As expected, the steeper is the probability density
function at the cutoff, the higher is the probability for the test to
reject the true null.

Unsurprisingly, all the tests have a comparable performance: No
theoretical reason suggests discrepancies for the three tests in
controlling size. Differences arise when finite sample power is
studied, as shown by Models 3 and 4.

5.2 | Model 3

Model 3. Define random vector 𝑍∗ = (𝑍∗
1 , 𝑍

∗
2 ), where 𝑍

∗
1 ∼

𝑈 (−1, 1), 𝑍∗
2 ∼ 𝑈 (−1, 1), and 𝑍

∗
1 and 𝑍

∗
2 independent. Define

sets 𝐴1 = {(𝑧1, 𝑧2) ∶ 𝑧1 < 0,−𝑧1 < 𝑧2} and 𝐴2 = {(𝑧1, 𝑧2) ∶ 𝑧1 >

𝑧2, 𝑧2 > 0}.

Consider two running variables𝑍1 and𝑍2 distributed as follows:

𝑍1 ∼
⎧
⎪
⎨
⎪
⎩

𝑍
∗
1 , if 𝑍∗ ∉ 𝐴1

𝑍
∗
1 , with probability 1 − 𝛾1 if 𝑍∗ ∈ 𝐴1

−𝑍∗
1 , with probability 𝛾1 if 𝑍∗ ∈ 𝐴1

𝑍2 ∼
⎧
⎪
⎨
⎪
⎩

𝑍
∗
2 , if 𝑍∗ ∉ 𝐴2

𝑍
∗
2 , with probability 1 − 𝛾1 if 𝑍∗ ∈ 𝐴2

−𝑍∗
2 , with probability 𝛾1 if 𝑍∗ ∈ 𝐴2

Model 3 mimics a setting where the two running variables are
manipulated, but in opposite directions: When 𝑍

∗ ∈ 𝐴1, 𝑍1 is
manipulated to get the treatment; when 𝑍

∗ ∈ 𝐴2, 𝑍2 is manip-
ulated to avoid the treatment. Parameter 𝛾1 governs the extent of
manipulation: When 𝛾1 = 0, the joint density of𝑍1 and𝑍2 is con-
tinuous; when 𝛾1 = 1, the joint density becomes zero in regions
𝐴1 and 𝐴2, resulting in the maximum discontinuity.

The curves depicted in Figure 4 illustrate the finite sample per-
formance of the tests. For both MT and BCT, the power of the
tests increases with the degree of manipulation 𝛾1, as expected.
For DT and SDT, the power always remains equal to the test size.
This design corresponds to the situation described in Section 4.3:
The condition in Equation (2) is not satisfied, because neither
the marginal densities of 𝑍1 nor 𝑍2 are continuous at the thresh-
old (as shown in Figure 3). Nonetheless, the probability density
function of the distance from the boundary is continuous. Conse-
quently, the null hypothesis tested by DT and SDT is true, result-
ing in trivial power for these tests.

5.3 | Model 4

Model 4. Consider two running variables distributed as fol-
lows:

𝑍1 ∼ (0, 1)

𝑍2 ∼

{
𝑈 (0, 1), with probability 𝛾2,

𝑈 (−1, 0), with probability 1 − 𝛾2.

Model 4 is a design where only𝑍2 is manipulated. The manipula-
tion is determined by the parameter 𝛾2. When 𝛾2 = 0.5, 𝑍2 has a
continuous density, following a uniform distribution between−1
and 1. When 𝛾2 = 1, the density of 𝑍2 becomes zero at the left of
the boundary. The degree of discontinuity increases as the value
of 𝑍2 deviates further from 0.5.

The curves in Figure 4 show how the finite sample power depends
on 𝛾2. The power increases with higher values of 𝛾2 for all tests,
but it is lower for DT and SDT. Additionally, despite two similar
versions of the same test, DT and SDT’s performances are differ-
ent. As discussed in Section 4.3, the choice of the unit of measure
affects the result of DT. In this case, the standardization applied
in SDT reduces its power compared to DT. Standardization is not
the solution to the issue.

MT and BCT exhibit similar behavior in the context of Model 4.
It mimics a framework different from the one studied in the local
asymptotic analysis, and there is no theoretical reason to expect
the MT to perform better in this setting.

Overall, the Monte Carlo simulations confirm that the MT pro-
posed in this paper has better finite sample properties than alter-
native tests. The simulations demonstrate advantages in terms of
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FIGURE 3 | Scatter plots of a sample of size 𝑛 = 5000 from the four models illustrate the joint distribution of 𝑍1 and 𝑍2. For Models 1 and 2,
parameter 𝑑 is set to 2 (two running variables). Joint density is continuous, and the condition in Equation (2) is satisfied. For Models 3 and 4, parameters
𝛾1 and 𝛾2 are 0.8: Joint density is not continuous, and condition in Equation (2) is not satisfied.

power and robustness, reinforcing the findings derived from the
local asymptotic analysis discussed earlier.

As outlined in Section 3, the proposed MT can be readily imple-
mented using existing packages in popular statistical software,
such as R and Stata, with just a few lines of code. This ease of
implementation enhances the practical applicability of the test.
The next section implements the MT in a real-world application,
illustrating its simplicity.

6 | Application: Frey (2019)

I apply my manipulation test to the MRDD considered by
Frey (2019) investigating the political economy of redistributive
policies. In the original analysis, no manipulation test is reported.
The paper studies the impact of cash transfers implemented by
the Brazilian federal government on the dynamics of clientelism
at the municipal level. The main hypothesis suggests that these
cash transfers, by reducing the vulnerability of the poor, dimin-
ish the attractiveness of clientelism as a strategy for incumbent
mayors.
The Bolsa Família (BF) program is the largest conditional cash
transfer program globally and has been implemented in house-
holds across Brazil since 2003. The coverage of BF across dif-

ferent municipalities exhibits a positive correlation with the
funding allocated to the Family Health Program (FHP), a
household-based healthcare program run by municipalities since
1995. The positive correlation between BF coverage and FHP
funding can be attributed to the fact that FHP teams have a sig-
nificant penetration among poor households, potentially benefi-
ciaries of BF. This enables them to effectively disseminate infor-
mation about the BF program and encourage enrollment among
eligible households.

To estimate the causal effect of the cash transfers on local clien-
telism, Frey (2019) exploits the link between BF and FHP, along
with a specific discontinuity in the design of the FHP. The FHP
provides municipalities with an additional 50% funding if they
meet two criteria: a population of fewer than 30,000 inhabitants
and a human development index (HDI) below 0.70. This disconti-
nuity, determined by the joint thresholds of population and HDI,
is directly reflected in the diffusion of the BF program: Conse-
quences of cash transfers can be analyzed using an MRDD.

Figure 5 provides a visualization of the MRDD. In the space of
the two running variables (population and HDI), treated munic-
ipalities are depicted in light blue, and untreated municipalities
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TABLE 2 | Rejection rates under the true null hypothesis of continuity of marginal densities of the running variables, computed through 5000 Monte
Carlo simulations, at 5% significance level. MT is the manipulation test proposed in this paper, BCT is the multiple hypotheses test with Bonferroni
correction, and DT and SDT consider as single running variables the Euclidean distance from the boundary: For SDT, running variables are standardized
to have unitary variance before computing the distance, while for DT they are not. 𝑑 is the number of running variables, and 𝑛 is the sample size.

Model 1 Model 2

𝒅 𝒏 MT BCT DT SDT MT BCT DT SDT

2
500 0.025 0.030 0.043 0.044 0.037 0.036 0.043 0.043

2000 0.036 0.039 0.047 0.046 0.042 0.041 0.050 0.049
5000 0.032 0.031 0.045 0.045 0.040 0.039 0.052 0.052

3
500 0.024 0.025 0.036 0.037 0.029 0.033 0.041 0.040

2000 0.027 0.029 0.041 0.040 0.038 0.039 0.039 0.039
5000 0.033 0.033 0.037 0.037 0.037 0.040 0.045 0.044

4
500 0.025 0.019 0.047 0.047 0.037 0.032 0.043 0.039

2000 0.020 0.019 0.041 0.040 0.036 0.036 0.042 0.042
5000 0.030 0.035 0.044 0.044 0.039 0.041 0.041 0.041

FIGURE 4 | Power of different manipulation tests with 𝑛 = 2000, computed though 5000 Monte Carlo simulations. The dotted line indicates the
nominal size of the tests (5%). MT is the manipulation test proposed in this paper, BCT is the multiple hypotheses test with Bonferroni correction, and
DT and SDT consider as single running variables the Euclidean distance from the boundary: For SDT, running variables are standardized to have unitary
variance before computing the distance; for DT, they are not. Parameters 𝛾1 and 𝛾2 determine the degree of manipulation. In Model 3, lines for DT and
SDT overlap.

in dark blue. The red line represents the boundary. In this spe-
cific context, the treatment corresponds to the additional FHP
funding, which leads to variations in the adoption rate of the BF
program.

In this context, the MRDD requires the assumption that the joint
density of population and HDI is continuous at the boundary,
thereby ensuring the continuity of their respective marginal den-
sities. The manipulation test is employed to validate the design
and enhance the credibility of the study’s findings. The test is
conducted considering two running variables, resulting in a 𝑝

value of 0.490, as reported in Table 3. With a significance level
of 𝛼 = 0.05, the null hypothesis is not rejected, indicating no evi-
dence of manipulation. In this context, the same conclusion of

absence of manipulation is also reached by the other tests dis-
cussed in Section 4 (BCT, DT, and SDT). This is not surprising, as
all the tests are expected to control the size similarly and mostly
differ in power. It is nonetheless interesting to observe how, even
in real applications, the DT and SDT yield different 𝑝 values,
despite using the same procedure just with a rescale of the run-
ning variables.

It is important to emphasize that the MT alone does not estab-
lish the model’s validity. It serves as a robustness check and pro-
vides supporting evidence for the continuity of the densities of
the running variables, but cannot substitute a discussion on why
the assumptions of the MRDD are likely to hold in this setting,
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TABLE 3 | 𝑝 values are reported for various manipulation tests for the MRDD considered by Frey (2019). For the testing procedure with Bonferroni
corrections (BCT), two 𝑝 values are presented (for population and HDI, respectively), as the procedure involves testing the continuity of the conditional
marginal densities separately, each at a 𝛼

2
level. For DT and SDT, the tests are performed using the signed Euclidean distance from the boundary as the

single running variable.

Test MT BCT DT SDT

𝑝 value 0.49 0.35, 0.45 0.19 0.38

FIGURE 5 | Running variables for the MRDD considered by
Frey (2019). Municipalities are assigned to the policy (light blue dots)
when the population is below 30,000 inhabitants (𝑥 axis), and human
development index is below 0.7 (𝑦 axis).

a discussion that remains essential for drawing valid conclusions
from the analysis.

7 | Conclusion

This paper introduced a manipulation test for the MRDD.
I extended the model proposed by Lee (2008) for the
single-dimensional RDD to the multidimensional setting, and
demonstrated, similar to McCrary (2008), how an assumption
on unobservable quantities in the model leads to a testable
implication on observable quantities—the continuity of the
conditional marginal densities of the multiple running vari-
ables. I proposed a manipulation test for this implication and
compared it with alternative approaches commonly used in
applied research. While these approaches vary, they generally
lack clear theoretical justification, and some are inconsistent for
the considered implication. Through Monte Carlo simulations
and local power analysis, I explored the finite sample properties
of the proposed tests.

The manipulation test should be seen as a robustness check to
strengthen the credibility of the assumptions required by the
MRDD, and it is not intended as a pretest. It can be readily
implemented with already existing packages without the need
for additional tuning parameters. Considering the application in
Frey (2019), I showed how to use the test in practice.

I focused on the case where treatment is assigned when each
running variable exceeds its threshold, using this rule to derive
a testable implication for the conditional marginal densities.
Notably, my approach does not directly extend to the geographic
RDD, where the boundary can follow more complex shapes.
Developing a test for the continuity of the joint density distri-
bution in this more general setting remains an interesting open
problem.
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ENDNOTES
1 See Abadie and Cattaneo (2018), Cattaneo et al. (2019), and Cattaneo

et al. (2024) for recent comprehensive reviews on RDD applications,
identification, estimation, and inference.

2 This shape of the assignment region is the most popular in practice (see
references below), but may exclude the spatial RDD.

3 Snider and Williams (2015) recognize that formal results are missing,
asserting that “Extending formal tests to check for the strategic manip-
ulation [… ] with a two-dimensional predictor vector is not immediately
clear.”

4 In Appendix S3.1, I show that the asymptotic family-wise error rate is
strictly less than 𝛼, and hence, the BCT is conservative. However, I also
show that the difference compared to the MT analyzed in this section
is primarily attributable to the testing procedure itself and persists even
when the test is adjusted to achieve exact size control.

5 The distance of each point 𝑧 from the boundary is defined as
min

𝑏∈ 𝑑(𝑧, 𝑏), where 𝑑(𝑧, 𝑏) denotes a metric in ℝ𝑑 (e.g., Euclidean,
Manhattan, and cosine). In Sections 5 and 6, I implement the test using
the Euclidean distance, assigning each point a scalar running variable
defined as min

𝑏∈

√
∑𝑑

𝑖=1(𝑧𝑖 − 𝑏
𝑖
)2, with the sign determined by the

treatment status.
6 In Section 4.2 and Appendix S3.1, I show that the BCT is conservative: a

test with nominal size 𝛼 asymptotically rejects the null with a probability
strictly lower than 𝛼. However, this difference is minor—for instance, a
test with 𝛼 = 0.05 rejects the true null with probability 0.049375—and
hence, all comments in this section remain valid even if the BCT were
adjusted to achieve the exact rejection probability of 𝛼.
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