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Climate change and weather events are increasingly affecting the macroeconomic performance
of countries and regions. However, their effects on income inequality are less understood.
We estimate the dynamic impact of thunderstorms on income and wages and reveal a robust
asymmetric effect. We leverage a comprehensive dataset covering more than 200,000 events
affecting contiguous U.S. counties across three decades. Storms have caused the highest number
of billion-dollar disaster events since the eighties, but they have the lowest average event cost.
They are short-lived, locally confined, relatively frequent, difficult-to-predict, and hazardous
albeit not fully destructive events. While such features are convenient for the identification
of impacts, previous studies mostly focused on more extreme events. We document a robust
negative association between storm activity, income and wages growth. While income tends
to recover in the long run, wages exhibit a significantly more stubborn decline, suggesting
persistent and adverse impacts on (functional) income inequality. A one standard deviation
increase in wind exposure generates a loss of 0.15% (0.21%) in wages after three (nine) years;
incomes fall by a larger extent initially (0.19% after three years) while fully recovering in
the longer run. In addition to their notable asymmetry, such estimates are non-negligible—
especially given the downward rigidity of U.S. wages. Our analyses also highlight a lack of
effective adaptation and stronger negative impacts in economically disadvantaged regions.
Finally, we find evidence for a sizable shock-absorbing role of federal assistance.

1. Introduction

The effects of climate and weather on economic activities have been obvious to mankind for thousands of years. In agricultural
societies, where a dry season or a strong hailstorm could induce devastating losses, weather has always been a daily concern
for peasants and farmers. Nowadays, with climate change reshaping the landscape of losses and potential damages, a thorough
understanding of the impacts of weather events is essential for designing appropriate adaptation and mitigation policies. This is the
goal of the rapidly growing “New Weather-Economy Literature” (Dell et al., 2014), which attempts to characterize the effects of
temperature, precipitation and extreme weather events on economic outcomes.
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Much empirical research focuses on the analysis of temperature and precipitation anomalies (Burke et al.,, 2015; Palagi
et al.,, 2022; Kotz et al., 2022) which, borrowing from statistical nomenclature, are often called “sufficient statistics”. Part of
their attractiveness lies in their simplicity, as well as their ease of use in projections, which allows researchers to effectively
explore, e.g., alternative future climatic scenarios. However, climate change has been convincingly shown to entail more complex
dynamics (Portner et al., 2022), as it causes changes along the state of the atmosphere, ocean and freshwater systems (Hsiang
and Kopp, 2018), as well as changes in the frequency and strength of extreme events. Focusing on sufficient statistics may hide
a substantial amount of heterogeneity, including physical specificities of distinct hazards (e.g., hurricanes, extreme temperatures,
floods), different behavioral attitudes and anticipatory actions, and geographical and sectoral asymmetries.

Numerous studies (e.g., Cavallo et al., 2011) have thus focused on the economic repercussions of distinct hazards, considering
time frames that extend beyond the immediate aftermath. There are several hypotheses in the literature about how output and
other economic variables might respond to extreme events in the long-run. The creative destruction and build back better hypotheses
postulate that natural hazards foster long-run economic growth by replacing damaged assets with newer and more efficient
ones (Skidmore and Toya, 2002; Ahlerup, 2013; Hallegatte and Dumas, 2009). On the contrary, the recovery to trend hypothesis
posits the lack of any permanent change to economic activity. Finally, the no recovery hypothesis conjectures a permanent negative
impact on long-run economic growth (Hsiang and Jina, 2014; Anttila-Hughes and Hsiang, 2013). Overall, empirical studies have
reached conflicting conclusions, depending on the hazard type, geographical scope, aggregation level and statistical methodology
employed (Cavallo et al., 2013; Klomp and Valckx, 2014; Skidmore and Toya, 2002).

In this paper, we contribute to the debate by studying the long-run economic effects of thunderstorms in the U.S.. While more
extreme phenomena have been thoroughly investigated (e.g., hurricanes and cyclones, Hsiang and Jina, 2014) the analysis of
thunderstorms has received considerably less attention. However, according NOAA data, severe storms have caused the highest
number of billion-dollar disaster events in the U.S. between 1980 and 2022 (163), though they have the lowest average event cost.
Overall, storms cover up to 15% of total disaster costs in U.S. since the eighties. For comparison, droughts total up to 7% and
wildfires to 5%.! Further, storms offer a valuable design. They are much more frequent and geographically dispersed than other
natural disasters, which increases sample size and variability in the data; they are very difficult to predict and vanish rapidly, which
eliminates anticipation effects and makes them resemble on-off shocks; they can interrupt electricity supply, impair traffic routes,
uncover roofs, flood buildings and destroy cultivated fields, cars and trucks, but they do not level entire blocks or cities as hurricanes
and tornadoes do. Relatedly, storms do not typically induce migratory phenomena of people and firms (Deryugina et al., 2018),
which allows avoiding major confounding factors in the identification of the impacts. This, however, does not prevent such events
from being highly damaging at the macroeconomic level. Indeed, severe storms account, every year, for 45% of all weather-related
insured property losses in the United States (Kunkel et al., 1999).

In our analyses we employ National Oceanic and Atmospheric Administration (NOAA) data on more than 200,000 severe
thunderstorms that hit the continental United States between 1991 and 2019, which we integrate with county-level economic data from
the Regional Economic Accounts (Bureau of Economic Analysis) and the Quarterly Census of Employment and Wages (U.S. Bureau
of Labor Statistics), and disaster declaration data from the Federal Emergency Management Agency (FEMA). Through distributed lag
models (Greene, 2003), traditionally employed in the analysis of exogenous meteorological events (Dell et al., 2012; Barrios et al.,
2010; Hsiang and Jina, 2014; Callahan and Mankin, 2022), we identify the response of income and wages to storm exposure.

We find significant statistical effects of storm exposure on both income and wages. However, while the impact on income shrinks
and eventually vanishes over time, in line with the recovery to trend hypothesis, the impact on wages appears to persist, in line with
the no recovery hypothesis. Given the downward wage rigidity of U.S. wages, the wage loss induced by storms is non-negligible:
counties hit by two storm events in a decade—ceteris paribus—experience a loss in real wages corresponding to about half of the
wage contraction suffered in the aftermath of the 2007 financial crisis. The combination of recovering income and persistence of
the wage loss suggests that severe storms may lead to an increase in functional income inequality. Such dynamics could be due to a
hazard-induced accelerated depreciation of capital, which leads firms to invest in new, labor-saving technologies. This is supported
by the evidence at the sectoral level of economic activity: while all industries show a negative and persistent statistical effect on
wages, such effect is more marked in sectors characterized by a higher intensity of physical capital (good producing industries).
Further, capital intensive sectors exhibit job losses that are not visible in services. Our results are robust to a battery of control
exercises, and we find similar patterns repeating our analyses on a separate set of nearly 200,000 hailstorms occurred between
1991 and 2019.

Next, we analyze the ability of specific localities to mitigate the negative impacts of storms. We find evidence that poorer counties
systematically display larger long-run impacts on income, consistent with a notion of local adaptation deficit, or gap (Fankhauser
and McDermott, 2014). At the same time, counties historically more exposed to storms do not display significantly smaller losses—
suggesting that, like for hurricanes (Bakkensen and Mendelsohn, 2016), repeated exposure to a natural hazard does not necessarily
lead to some forms of successful adaptation. Finally, and importantly, we find evidence of a critical role for public interventions
in containing the impacts of storms: our results show that areas which benefit from federal aid in the aftermath of a storm do not
experience significant losses in income and wages.

To sum up, our results support two main conclusions. First, (relatively) non-extreme but rather common natural hazards such as
thunderstorms can differentially impact economic sectors and income classes. While the negative statistical effects on income taper
in the long run, those on wages persist, exacerbating the existing trend of rising income inequality (Piketty and Saez, 2014). Second,

1 See https://www.ncei.noaa.gov/access/billions/.
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we find that poorer areas show evidence of an adaptation deficit relative to richer ones and, remarkably, public interventions (in
the form of federal aid) appear to effectively counteract negative economic impacts. As climate change could increase both the
frequency and the magnitude of severe storms (Diffenbaugh et al., 2013), mitigation and, especially, adaptation policies need to be
strengthened in order to enhance local resilience and reduce vulnerability to this type of hazards.

The remainder of the paper is organized as follows. Section 2 reviews the literature on storms, climate change and the impact of
natural disasters on the economy. Section 3 describes data and methodology employed in our analyses. Section 4 details our results.
Finally, Section 5 provides conclusions and remarks on future work.

2. What do we know about the long-run economic impacts of natural hazards?

Natural hazards can significantly affect physical and social infrastructure, property, environmental conditions, and living
standards (Ibarraran et al., 2009). Macroeconomic studies consistently show immediate declines in economic output, deteriorated
trade balances, fiscal imbalances, increased poverty rates and heightened income inequality measures (Rasmussen, 2004). These
findings are corroborated by micro-level studies on economic and socio-demographic indicators such as productivity, life expectancy,
mortality and crime rates (Hsiang et al., 2017). However, signs and magnitude of aggregate economic effects in the medium and
long-run are still openly debated (Noy et al., 2018).?

Overall, scholars have proposed four different—and by and large mutually exclusive—hypotheses on the long-term consequences
of natural hazards, as summarized in Hsiang and Jina (2014).° First, according to the creative destruction hypothesis, the occurrence of
hazards can temporarily stimulate economic growth by increasing demand for goods and services as communities replace lost capital,
fostering the influx of aid and assistance, and triggering innovations (Skidmore and Toya, 2002; Ahlerup, 2013). However, only in
exceptional cases (e.g., small nations receiving sizable international aid) economies are able to avoid a short-run decline in output.
The “build back better” hypothesis suggests that natural disasters are immediately followed by a slowdown in economic growth
due to loss of life and productive capital, as well as lengthy and onerous reconstruction processes, but that long-term economic
growth is stimulated by the replacement of damaged assets with newer and more efficient units (Hallegatte and Dumas, 2009;
Sawada et al., 2011; Akao and Sakamoto, 2018). Similarly, the recovery to trend hypothesis postulates that an economy hit by a
hazard experiences a short-term contraction, but eventually returns to its pre-disaster growth trajectory. In contrast, the no recovery
hypothesis suggests that the negative effects of a hazard on an economy persist beyond the initial contraction phase, preventing
the return to the pre-hazard growth trajectory (as found for hurricanes in Hsiang and Jina, 2014). Various mechanisms have been
proposed to explain such hysteresis dynamics (Cerra et al., 2023), including the diversion of resources from productive investment
to meet urgent consumption needs (Anttila-Hughes and Hsiang, 2013).

Empirical analyses often produce conflicting findings—in support of one or the other hypothesis—which could be due to a variety
of factors. First, results can vary with the statistical methods employed. Most of the initial studies used cross-sectional regressions,
which can suffer from omitted variable bias (Hino and Burke, 2021). This concern has been mitigated through an increasing use of
methods that exploit panel data (Dell et al., 2014; Burke et al., 2015), or at least repeated observations of the phenomenon under
analysis (Hino and Burke, 2021; Bernstein et al., 2019). An additional challenge is posed by the simple fact that economies are
constantly changing; pinpointing the effects of specific events requires appropriate “counterfactuals” to compare against observed
data. This is typically pursued either through the introduction of composite fixed effects (Zivin et al., 2023), or by creating artificial
control groups through, e.g., propensity score matching algorithms (Deryugina et al., 2018). Second, results can vary with the
geographical scope of an analysis, because different countries and areas have distinct socio-economic structures, are at different
development stages and are characterized by heterogeneous levels of exposure and resilience to natural hazards. Not surprisingly,
most of the studies reporting evidence in favor of the build back better hypothesis focus on high-income countries (Crespo Cuaresma
et al., 2008; Lackner, 2018), endowed with enough resources and technical know-how to pursue effective adaptation and efficient
capital replacement. Third, results can vary with geographical resolution. Natural hazards are highly localized—even tough their
effects can extend well beyond the affected area (Hallegatte, 2019). Broad, aggregate studies might therefore either fail to capture
confined impacts, or confound them with spatial spillover effects—which may have very different signs and magnitudes across
locations. Regional studies have indeed produced more clear-cut results (Xiao and Feser, 2014; Hornbeck, 2012; Vu and Noy, 2018).

Increased geographical resolution may also enrich and help disambuiguate analyses in terms of income levels. Growing evidence
from aggregate studies based on sufficient statistics is pointing towards asymmetric consequences of climate anomalies, with poorer
populations carrying a heavier burden from climate anomalies (Palagi et al., 2022). For what concern specific natural hazards,
the micro-econometric literature has often concentrated on event studies (Elliott and Pais, 2006), particularly in highly-exposed
developing countries (Carter et al., 2007; Mottaleb et al., 2013; Sakai et al., 2017).* Recent studies examining a larger set of events
have provided additional evidence supporting a connection between natural hazards and income inequality, both through macro-
(Cappelli et al., 2021) and micro-econometric approaches (Howell and Elliott, 2019). However, little is still known about long-run
effects of specific natural hazards on income inequality at a sub-national level.

2 Most of the empirical results which are currently contributing to the debate originate from the so-called New Weather-Economy Literature (Dell et al.,
2014), to which this work also contribute.

3 Focusing on hurricanes, Bakkensen and Barrage (2018) proposed a stochastic endogenous growth model that tries to reconcile these contradictory hypotheses
within a unified framework.

4 Sociological research has generated numerous studies demonstrating their disproportionate effects on vulnerable population segments (Baez and Santos,
2007; Klein, 2007).
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By the same token, results can vary based on the “economic resolution” of the data, as impacts are very heterogeneous across
sectors and economic activities, and are generally greater in agriculture (Xiao, 2011) and manufacturing (duPont IV and Noy, 2015).
When examining labor market outcomes, research that emphasizes sufficient statistics indicates adverse effects on both wages and
unemployment, primarily attributed to reduced labor productivity (Leduc and Wilson, 2023). Conversely, investigations centered
on catastrophic events such as hurricanes tend to reveal positive impacts on labor compensation (Belasen and Polachek, 2009;
Kirchberger, 2017; Zhu et al., 2021), although there are studies that report contrary findings (Mueller and Quisumbing, 2009). These
positive effects are frequently attributed to mechanisms that characterize major events, and typically do not apply to thunderstorms,
including: (i) significant migration (Groen and Polivka, 2008; McIntosh, 2008), leading to increased unemployment and reduced
labor supply (McComb et al., 2011); and (ii) considerable disruptions, coupled with the influx of federal and international aid (Zhu
et al., 2021), which bolsters specific sectors of the economy—e.g. construction (Belasen and Polachek, 2008).

Finally, a distinct body of literature delves into the pivotal role of international or federal assistance in facilitating recovery
following hazardous events. Typically, these studies illustrate how aid helps mitigate adverse macroeconomic consequences. While
the majority concentrate on country-level analysis, primarily examining aggregate income (Yang, 2008; Hochrainer, 2009), there
are also studies focused on the United States that employ county-level analysis (Davlasheridze and Miao, 2021; Deryugina, 2017)
or that specifically focus on wages (Zhu et al., 2021).

In this paper we contribute to the debate by focusing on a specific and understudied type of hazard: severe thunderstorms.
While less extreme than other, more broadly studied hazards (e.g., floods, hurricanes, tornadoes) storms are more common and
can be highly damaging. From a meteorological standpoint, they are low-pressure areas, even if the term storm is widely used
also in a broader sense to indicate heavy winds or hailstorms.> Growing evidence suggests that climate change is likely to increase
both the frequency and the strength of both thunderstorms (Diffenbaugh et al., 2013) and extra-tropical storms in the Northern
Hemisphere (Vose et al., 2014). Here, we focus on the United States, where storms are a fundamental part of the nation’s climate,
producing between 15% (West Coast) and 70% (high plains) of the average precipitation across the nation. Storm-related damages
are a fairly frequent occurrence nation-wide, accounting for 45% of all weather-related insured property losses (Kunkel et al., 1999).°
These events are typically characterized by wind speeds (measured on the Beaufort wind force scale) ranging from 75 km/h to
hurricane-like forces (> 118 km/h, cf. Barua, 2005); the associated impacts can range from slight structural damages (severe gales)
to devastation (hurricane-like wind forces).

Studying the U.S. allows us to consider a large geographical area, with data of reliable quality and reasonably high resolution (the
counties). Thus, our analyses can leverage highly diversified information, both in terms of hazard exposure and in terms of economic
activities. On such rich data, we employ an empirical strategy akin to that in Hsiang and Jina (2014) and, more recently, Callahan
and Mankin (2022). Another point of strength of our study is the ability to consider different aggregate economic outputs, namely
income and wages, both overall and by economic sector. This helps further elucidate the transmission channels through which
hazards (storms in our case) affect the economy (Hsiang et al., 2017), and the asymmetric dynamics effects these events may
induce.

3. Data and methods

In this Section, we describe in detail the data on storms and economic variables used in our analyses (Sections 3.1 and 3.2), the
measures of hazard exposure we calculate from the storm data (Section 3.3), and our empirical strategy (Section 3.4).

3.1. Storm data

We employ data from the Storm Events Database (SED), which is maintained by the National Oceanic and Atmospheric
Administration (NOAA), and informed by the National Weather Service (NWS). SED documents a variety of weather-related events
capable of causing significant losses to property or life (see Table A.1). In our study, we only consider severe storm events involving
damaging winds, i.e. those labeled as “thunderstorm wind”.” Among these, we further restrict the analysis to those with wind speeds
higher than 75 km/h (or 21 m/s)—the wind speed at which structural damage occurs®—taking place between 1991 and 2019, for
a total of 307,289 events.’ After extensive data cleaning and grouping of storm events, our final dataset consists of 204,319 distinct
storm events—details are provided in Appendix A. As already mentioned above, a crucial feature of these events is that they extend
well beyond the typical hurricane landfall basins (see Fig. 1A).

Severe storms are typically highly-localized, short-lived phenomena (Changnon, 1980; Fujita, 1985; Caracena et al., 1989). The
average storm span in our dataset is just 6.91 km, and the 95th percentile just 33.61 km.'* Even restricting attention to events with

5 In Section 4.4 we also consider hailstorms.

6 Storms are typically better covered by insurance policies than other types of hazards (Jahn, 2015).

7 SED also contains other types of events that involve damaging winds; namely, events labeled as “high wind” and “strong wind”. We did not consider
these in our study, as they may include non-convective events (Knox et al., 2011), and are collected by SED within a time span different from that used for
thunderstorms. Nevertheless, including them does not sensibly alter our main results (estimates available upon request).

8 See https://www.weather.gov/media/pqr/wind/wind.pdf.

9 Excluding events with wind speed lower than the designed threshold does not alter our main findings, see Figure B.4.

10 For approximately 97% of the events comprised in our final dataset SED provides start and end coordinates; the span, or radius, of these events is computed
as the distance between start and end coordinates. Events were attributed to counties not by relying on coordinates but rather by utilizing the FIPS codes provided
by SED, which SED itself indicates as the primary geolocation information—see Appendix A.
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Fig. 1. Panel A: Yellow points mark the locations of the 204,319 thunderstorm events occurred between 1991 and 2019 within the continental U.S., with
reported initial and final coordinates. In contrast to the broad geographic spread of these locations, the red shading indicates counties that suffered at least one
Atlantic basin tropical storm (with sustained wind above 21 m/s) between 1991 and 2019—source: modeled winds (Willoughby et al., 2006) from hurricane
best tracks data (Anderson et al., 2020). Panel B: Number of observed thunderstorm events by duration, measured as the difference between start and end time
of storms (only events with strictly positive duration). The inset shows a detail of the left tail of the distribution. Panel C: Number of observed thunderstorm
events by span, measured as the distance between the start and end location of storms (only events with strictly positive span). Panel D: Number of observed
thunderstorm events and mean wind speed (in kilometers per hour) in various sub-periods of the 1991-2019 time interval covered by the study.

strictly positive span,'! the distribution remains right skewed, with a mean of 20.33 km and a 95th percentile equal to 49.30 km
(see Fig. 1B). In terms of duration, most events last less than one hour (see Fig. 1C), and almost all (99.1%) begin and end on the
same day. Further, thunderstorms are very difficult to predict, even a few days ahead (Clark et al., 2009; Lawson, 2019), which
reduces the chances of effectively anticipating their arrival. Notwithstanding their limited span and duration, these events can cause
large damages to property and people, with effects ranging from large branches breaking off trees, to constructions and barricades
blowing over, to flash flooding.

3.2. Economic data

We retrieve county-level data from the Quarterly Census of Employment and Wages (QCEW), maintained by the Bureau of Labor
Statistics (BLS). QCEW publishes quarterly measurements covering more than 95% of U.S. jobs, disaggregated by the economic
sectors comprised in the North American Industry Classification System (NAICS). In our main analyses, we employ Annual Average
Pay (i.e. per capita annual wage) as our primary measure for wages. It includes the base wage but also bonuses, stock options,
severance pay, the cash value of meals and lodging, tips and other gratuities. Employment, as captured by the Annual Average

11 Approximately 63% of the events in our dataset are recorded as starting and ending in the same location, and thus have a radius of 0 km. Likewise,
approximately 57% of observations report identical start and end date. These instances are likely to signal very short and geographically confined storm spells.
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Wages 77.93% 80.1% 70.37% 63.79% 44.91% 60.91%

Interest or dividends <0.05% 0.05% 0.29% 1.5% 7.72% 3.45%
Business, farm, self-employment 3.24% 4.51% 7.74% 8.53% 24.43% 13.77%
Capital gains <0.05% 0.78% 0.37% 1.93% 12.01% 5.37%

Social Security or retirement 11.03% 12.14% 18.94% 17.89% 9.6% 13.35%
Transfers or other 7.76% 2.42% 2.28% 6.36% 1.33% 3.15%

Fig. 2. Panel A: Average rate of change of Annual Average Pay (wages) and Income per capita, 1991 = 1. Panel B: Distribution of Annual Average Pay and
Income per capita at the county level, 2019. Panel C: relative percentages of before-tax family income, distributed by income sources, by percentile of net
worth, in 2019 (source: Survey of Consumer Finances, Board of Governors of the Federal Reserve System). Panels A and B use variables computed with same
denominator to ease comparison.

Employment measure, is used in our robustness checks. In the QCEW, wages are registered as reported by employers. As such, they
are imputed to the county where the employer is located (Feyrer et al., 2017).!2

Separately, we retrieve county-level data on personal income from the Regional Economic Account (REA), published by the
Bureau of Economic Analysis (BEA). REA measures total personal income as the total of all the revenues arising from wages,
proprietors’ income, dividends, interest, rents, and government benefits. It is calculated as the sum of wages and salaries, supplements
to wages and salaries, proprietors’ income with inventory valuation and capital consumption adjustments, rental income of persons
with capital consumption adjustment, personal dividend income, personal interest income, and personal current transfer receipts,
less contributions for government social insurance plus the adjustment for residence. An individual’s income is registered in the
county where she lives, even if the income originated elsewhere.

Fig. 2 depicts the behavior of average income and wages in our sample. It provides a tale of increasing functional income
inequality. In 2019 incomes are way larger than wages (panel B), as a result of a considerably more sustained process of growth
spanning at least three decades (panel A). In an average county, wages account for about 60% of total incomes, with considerable
differences along the income distribution (panel C). Our study attempts to assess whether weather events—particularly storms (which
are relatively widespread and frequent)—contributed to exacerbating this macro-trend.

3.3. Storm exposure measures

To analyze the association between thunderstorms and economic variables observed at the county level, we produce a yearly,
county level measurement of exposure aggregating storm events. Formally, the aggregation is performed through a generic metric
function

M,',; = M(’?l,i,p Moo+ 7’1}1"1,1',[) (€9)]

12 In QCEW, average annual figures per employee are computed by dividing total annual wages by annual average employment. In some states, QCEW
wages also include states’ employer contributions to certain deferred compensation plans, such as 401(k) plans. Further, note that individuals employed by
state and local governments on a temporary basis following a declared emergency, e.g., due to a storm, fire, snow, earthquake, flood, etc., and individuals
employed under a Federal relief program are excluded from QCEW data. For details, see https://www.bls.gov/cew/publications/employment-and-wages-annual-
averages/2022/home.htm.


https://www.bls.gov/cew/publications/employment-and-wages-annual-averages/2022/home.htm
https://www.bls.gov/cew/publications/employment-and-wages-annual-averages/2022/home.htm

M. Coronese et al. Journal of Environmental Economics and Management 130 (2025) 103074

where M;, is the exposure measure for county i in year ¢, u(-) is the metric function, and 7;,,, with j = 1,...,n;, are the n;, events
affecting county i in year ¢. The literature on hazard impacts provides several choices for u(-), with different emphasis on event
intensity and/or frequency. We consider four alternative functions and test the robustness of our results to the resulting exposure
measures (see Figure B.5).

Nordhaus (2010) focused on frequency as the primary factor for the analysis of the economic impacts of hurricanes. The sheer
number of events can indeed be a simple and effective way to capture activity also in the case of storms, resulting in the first
exposure measure:

1
Mi(, )= Ui Mo - s nn,-v,,i,t) = #1000 - ’”ni',,[,r) =N 2

where #(-) is the counting function that enumerates the elements of a set.!*> However, this approach disregards information about
wind speed, which can be captured through metrics derived from climate physics. This is what we do with the second exposure
measure; namely, the maximum wind speed experienced throughout all storms in a given year (as in Hsiang and Narita, 2012):

2
M,»(,,) = 1O Mg oo > My i) = jmaX Sjie 3)
where s;;, is the wind speed recorded during event 7, ;.. Measuring exposure through maximum wind speed is appealing, as most
rigid materials used to construct durable capital fail above a critical level of stress. On the other hand, this approach does not consider
the cumulative effect which may derive from the occurrence of multiple storms in the same time period. In order to account for
both magnitude and frequency, metrics are often based on empirically derived damage functions which relate a physical stressor
(e.g., wind speed) to experienced damages. Damage functions are highly heterogeneous, as they are typically scale and location-
dependent and can change over time (due, e.g., to adaptation). As such, they cannot be directly inferred from a few physic principles,
although they are often concave and upwardly curved. Hence, the general approach is to model exposure as either the square (Pielke
and Landsea, 1999) or the cube (Emanuel, 2005) of wind speed, although higher powers have also been suggested (Miinchener,
2002; Nordhaus, 2010). Since damages accumulate, aggregation can be achieved through summation (Henry et al., 2020). This
leads to the third and fourth exposure measures, using squares and cubes, respectively:
Rt
3
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Another important consideration is that, while storms in our dataset have relatively homogeneous sizes, county sizes range from 62
km? (Bristol County, Rhode Island) to 51,947 km? (San Bernardino County, California). Since exposure could simply increase with
county size, in line with the literature (Hsiang, 2016) we normalize the measures in Egs. (2), (3), (4) and (5) as

SO = Ay® | =1,2,3,4 ®)
P =M

where g; is the area of county i, and a the average county area. Because of this normalization, estimated impacts (Section 4) should
be interpreted as impacts on a county of average size.'*

Using the cumulative, square-based measure S®, Fig. 3A shows the percentage of years in which each county registered an
exposure in excess of one (pooled) standard deviation above the (pooled) mean.'® This demonstrates again the much broader
geographical spread of the storms considered here relative to that of typical hurricanes and tropical storms. The vast majority
of storm over-exposure occurs east of the Rocky Mountains (though storms extend to other parts of the country; see Fig. 1 A). In
addition, the distribution of exposure measures (pooled over counties and years; Fig. 3B) presents a large spread and a strong skew—
suggesting a marked heterogeneity over time and space. Fig. 3C reports correlations for the four exposure measures considered,
which range between 0.7 and 0.98—suggesting that all measures capture the same salient aspects of storm exposure.'®

3.4. Empirical strategy

We model our panel data, which comprises i = 1, ...,2,408 counties and ¢ = 1, ...,29 years, with the general equation

p
Vig = Z BrSivr +rXip+ o+, +€,
#=0

where y;, is the annual growth rate of our dependent variable (i.e., annual average pay or, separately, income per capita), S;, is
an exposure measure (as defined in Eq. (6)), which enters the model with p lags (# =0...., p), and X, is a set of control variables.

a; is a county-level fixed effect introduced to control for observed and unobserved characteristics, such as differences in climate

13 Even simpler metrics can be employed, as in Deryugina (2017), which only considers a dichotomous variable indicating whether a county has been affected
by at least one event in that year.

14 In the case of very small counties, very large scaling factors generate outliers. We trimmed our data to mitigate their effect. Additional details are provided
in Appendix A.

15 The square of a wind speed is often used as it proxies the energy carried by the storm, see Nordhaus (2010).

16 Similar correlations can be observed among non-normalized exposure measures, i.e. among M, M@, M® and M®, see Table A.2.
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Fig. 3. Panel A: Percentage of years (between 1991 and 2019) in which each county experienced an exposure (S®) in excess of one pooled standard deviation
above the pooled mean. Panel B: Distribution of exposures (S™®) for all counties and years (1991-2019). Panel C: Correlations for normalized exposure measures
Ssh, @, 8§ and SP; see Egs. (2), (3), (4), (5), and (6)).

and in long-run trajectories of economic development across counties.'” w;, is a term that, in various specifications of our model,
comprises alternative formulations of composite time fixed effects. In its most comprehensive formulation, ;, represents time-
varying individual effects entering the model as heterogeneous time trends (Bai, 2009), generated by multiple common time-varying
factors. For instance, when estimating cyclone impact on country-level growth, Hsiang and Jina (2014) consider year-fixed effects
and country-specific trends, thus controlling for country-specific changes in economic policies and curvatures of income growth
trajectories, as well as trends in climate variables. In our data, we do not find evidence of time trends in the county-level growth
rates of the dependent variables (cf. Figure B.1); most common statistical tests exclude the existence of trends for an overwhelming
majority of counties. Nevertheless, we include state-specific linear time trends in our baseline specification in order to flexibly capture
macroeconomic dynamics and, in a conservative spirit, any possible true or artifactual trends in climate variables.'® Our baseline
model is thus

)4
Yig = Z BeSive Ty X o+ +Agt + ey @
£=0
where A t represents a state-specific linear time trend (S; is the state to which county i belongs).
Considering S;, with p lags allows us to capture its effects dynamically; for an exposure occurring in year #,, we track the
response of the dependent variable throughout the period from ¢, to 7, + p. Since we are interested in examining dynamic responses
to storm exposure over a long time span, we typically set p = 10. This is as large as we can afford while still guaranteeing reliable

17 Since our dependent variable is expressed in growth rates, a, captures the time-trends along which each county moves over time.
18 As shown in Table B.5 results are robust to the exclusion of state-specific trends, as well as to the inclusion of more restrictive time fixed effects.
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estimates; the panel comprises 29 years of annual exposure measures, so p = 10 already excludes over one-third of the observations.
Information criteria and Wald tests have been used to justify our lag selection (see Appendix B Section “Lag selection”). Notably,
though, results are robust to different choices of p (cf. Table B.6). Following Hsiang and Jina (2014) and, more recently, Callahan
and Mankin (2022), for each intermediate duration = < p we can express the cumulative effect of storm exposure as

Co=2h . ®
=0

While our models estimate the dependent variables as growth rates, the results presented in Figures and Tables throughout the
manuscript are consistently expressed as cumulative effects (C,) standardized relative to a pooled standard deviation of exposure,
along with corresponding confidence intervals. Therefore, each specific value of C, should be interpreted as the percentage difference
in the dependent variable (annual average pay or income per capita) in levels, up to 7 years after exposure, holding all else constant.

Our panel methodology exploits both cross-sectional and temporal variations in storm exposure measures. We note that the
timing, location and intensity of storms “shocks” are unpredictable and stochastic across years, conditional on each county’s typical
climate. Our exposure measures may be seen as locally exogenous variables to the dynamics of U.S. incomes and wages. Further, the
timespan of our sample and its geographical coverage make any influence of the economy on the occurrence and strength of weather
events implausible.’® As a consequence, in tune with other studies employing analogous measures (e.g. Hsiang and Jina, 2014), the
reported values of C, may reflect a causal effect of the weather. However, we notice that our model does not estimate the effect of
being hit by a single storm; rather, it identifies the local (county-level) dynamic impact of suffering, in a given year, an exposure
to thunderstorm winds that is one standard deviation higher than the historical average in that location, all else being equal. In the
Appendix, we restrict our attention to empirical settings that are closer to event-studies to check the robustness of our results (see
also Section 4.2, Figures B.8 B.9 and Table B.8). To account for spatial clustering of the variables used in our empirical setting (see
e.g. Fig. 1), all uncertainty measures related to our estimates are based on spatially robust Conley standard errors (Conley, 1999)
allowing for arbitrary serial correlation (Colella et al., 2023) - see also Section 4.2 and Figures B.10, B.11, B.12).

In Section 4.3, we model local spatial spillovers in order to disentangle direct and indirect (to neighboring counties) effects.
We do so by estimating a Spatial Lag of X (SLX) model (Halleck Vega and Elhorst, 2015) which explicitly includes p lags of the
weighted mean of the exposures of neighboring counties (S") as covariates, with the weighting scheme being determined by the
spatial weighting matrix W:

p p
Yig = z BeSis—¢ + Z waisii,\,[_f +rXis o+ + At ()
#=0 /=0

Finally, we consider an alternative specification of the model in which exposure, at all lags, interacts with a categorical variable
that labels counties (D;), or counties and years in the most general formulation (D, ), as belonging to different groups:

P
Yig = Z ﬂt’,D,(Si,t—i XD )+r X+ + ¢+ AS,.’ tey, - 10)
£=0
We utilize Model (10) with county labels to differentiate impacts based on income and historical exposure levels (Section 4.5), and
with county-and-year labels to differentiate impacts based on whether FEMA disaster declarations were issued (Section 4.6).

4. Results

In this Section, we report our main results on the impact of thunderstorms on wages and income per capita at the county level
(Section 4.1), followed by a battery of additional analyses which confirm their robustness (Section 4.2)—including a parallel analysis
of the economic impacts of hailstorms (Section 4.4). Finally, we report results that offer important insights on the ability of different
counties to adapt to storm exposure (Section 4.5), and on the role of public relief policies (Section 4.6).

4.1. The impact of storm exposure on income and wages

Our findings reveal a significant negative association between storm exposure and both wages and income per capita, although
with notable differences. Estimates arising from our baseline model (Eq. (7)) employing our preferred measure of exposure S®
(Egs. (5) and (6)) are summarized in Fig. 4 and Table 1. Following a storm exposure of one pooled standard deviation beyond the
historical average, wages exhibit a steady and nearly monotonic decline over time (Fig. 4). More specifically, wages are estimated to
undergo a 0.14% reduction below pre-exposure levels in the medium-run (after 3 years), eventually stabilizing at a plateau of 0.21%
below pre-exposure levels in the long term (after 10 years). The estimated negative impacts exhibit high statistical significance in
all years, except the one in which the exposure occurs (C,; Table 1). Remarkably, the estimated dynamic effect of storm exposure
on per capita income follows a different pattern. The same-year impact on income is statistically significant and substantially
larger than that on wages (a decrease of 0.1% compared to 0.027%). This is likely explained by wage stickiness; revising labor
contracts—whether upward or downward—is typically a time-consuming process, while damages to capital stock (e.g., buildings

19 Tables B.10 and B.11 in Appendix B provide additional robustness checks testing the lack of predictive power of past exposure on present exposure,
conditional on local climatic conditions; in addition, we provide evidence that storm exposure is not related to key socio-economic confounders that can
influence wages or income, see Table B.12.
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Fig. 4. Cumulative effects of severe thunderstorms (C,) for one pooled standard deviation of the exposure measure, on Annual Average Pay (wages; red) and
Income per capita (blue), as estimated by Model (7). The exposure measure is S® (Eqgs. (5) and (6)). The number of lags considered is p = 10. The climatic controls
included are population-weighted county-level yearly total precipitations and average temperatures. The shaded areas represent spatial and serial correlation
robust Conley 95% confidence intervals (spatial cutoff 50 km, temporal cutoff 1 lag, Colella et al., 2023). The horizontal black dotted line at 0 represents the
baseline trend for each county (a 0 effect indicates that a county follows its baseline trajectory after storm exposure). Full details on estimates can be found in
Table 1.

and infrastructure) are immediately reflected in reduced incomes. In the short term, income follows a declining trajectory until
reaching its minimum (—0.18% after 3 years). Subsequently, it gradually recovers, eventually approaching pre-exposure levels in the
long run; the estimated impact after 10 years is small (—0.026%) and no longer statistically significant. Thus, the dynamic behavior
of wages is consistent with the no recovery hypothesis, while that of income aligns with the return to trend hypothesis.?° Since income
comprises both labor and capital components (e.g., rents, profits, etc.; see also Fig. 2, panel C), this divergent behavior points towards
a concurrent deterioration of functional income inequality. Though our estimates are not as large as those associated with more
destructive events (e.g. Hsiang and Jina, 2014), the frequency of storms and the trend in their occurrence suggest a non-negligible
economic effect, especially considering the downward U.S. wage rigidity. More specifically, in the 1136 counties (corresponding to
47% of the sample) in which we register at least 2 events corresponding to a one-standard-deviation variation in exposure (or more)
in a 10 years period, the loss in real wages—ceteris paribus—is about half of the wage contraction suffered in the aftermath of the
2007 financial crisis.?!

The findings described above do not depend on the choice of exposure measure S®. Using the other measures introduced in
Section 3.3; namely, 1, S@ and S® (Egs. (2), (3), (4) and (6), respectively), yields very similar results for both wages and income
(Figure B.5). More specifically, estimated impacts are slightly milder with S®, almost identical with §®, and slightly stronger with
SO, This suggests that the observed dynamics are likely triggered by a combination of hazard severity (primarily captured by S®)
and hazard frequency (primarily captured by S1).

To gain a deeper understanding, we repeat the analysis disaggregating wages by economic sector. We fit Model (7) separately
for the primary sector (agriculture, forestry, fishing, hunting and mining), the service sector, and the goods-producing sector further
partitioned into Construction and Manufacturing—which are characterized by distinct dynamics following a climatic shock (Belasen
and Polachek, 2008; Hsiang, 2010).?> As shown in Fig. 5, Services, Construction and Manufacturing exhibit a wage dynamics
similar to that observed at the aggregate level, with an initial decline followed by a stabilization below pre-exposure levels. The
primary sector differs from the others; estimated effects do not reach statistical significance in both the short and the long run, but
the estimated contemporaneous effect is significant and notably larger than in other sectors. This aligns with the notion that the
agricultural sector may experience more immediate and pronounced impacts from weather shocks (Xiao, 2011). Additionally, the
primary sector—and in particular agriculture—is typically characterized by seasonal work contracts; this reduces wage stickiness and

20 Notice that an almost identical dynamics of the response of wages is obtained using BEA rather than QCEW data on wages; see Figure B.3.

21 According to FRED data, the real median weekly wage of full time workers in the five years following the 2007 financial crisis moved from 335 USD (Q1
2008) to 331 (Q1 2013), totaling a 1.2% reduction before restarting positive year-on-year growth.

22 While sectoral data is available at finer digits resolution in the QCEW dataset, we focus on this coarse partition because capturing the effects of highly
volatile county-level sub-sectoral dynamics would require more targeted studies and is beyond the scope of this study.
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Table 1

Cumulative effects of severe thunderstorms (C,), in percentage, for one pooled standard deviation of the exposure measure, on
Annual Average Pay (wages) and Income per capita, as estimated by Model (7). The exposure measure is S® (Egs. (5) and
(6)). The number of lags considered is p = 10. The controls included in the model are population-weighted county-level yearly
total precipitations and average temperatures. Spatial and serial correlation robust Conley standard errors (spatial cutoff 50 km,
temporal cutoff 1 lag, Colella et al., 2023) are reported between parentheses. See also Fig. 4.

Years since storm exposure Annual average pay Income per capita
Cumulative effect C, Cumulative effect C,

0 —0.027+%(0.015) (0.027)
1 % (0.035)
2 < (0.041)
3 < (0.047)
4 (0.049)
5 (0.055)
6 —0.102* (0.059)
7 —0.070 (0.063)
8 —0.106 (0.068)
9 —0.058 (0.072)
10 —0.026 (0.076)
County fixed effects v v

Year fixed effects v v
State-level trends v v
Climatic controls v v

Adjusted R? 0.045 0.089
Observations 45752 45752

Wald (y?) test s, =0 (p-value) < 0.001 < 0.001

Note:

*EEx p < 0.001.

% p < 0.01.

** b <0.05.

* p <0l

may contribute to its ability to quickly respond to exogenous shocks. The goods-producing sector exhibits larger negative impacts
than the service sector. This is especially true for Manufacturing, in line with previous results (duPont IV and Noy, 2015), while
Construction exhibits a medium-term temporary rebound, potentially influenced by public aid flows and reconstruction efforts. In all,
our findings are consistent with the notion that industries in which physical capital plays a larger role experience more pronounced
disruptions due to storms.

While the short-term effects can be attributed to a storm-induced decline in productivity, we interpret our findings on the long-run
impacts of storm exposure as the outcome of firms replacing damaged physical capital before its natural obsolescence—i.e., hazard
induced depreciation (Hsiang and Jina, 2015). This process of capital substitution is not technology neutral, as it often entails the
adoption of labor-saving technologies, which can lead to a decrease in labor demand and to a permanent reduction in wages. At
the same time, capital replacement drives income towards its pre-exposure levels, potentially resulting in a net increase in income
inequality. This conjecture is corroborated by the fact that the effect is stronger in higher capital intensive sectors. To further
investigate this mechanism we also tested the effect of storms on employment dynamics across different sectors. Results show
significant job losses in constructions, agriculture and manufacturing (albeit at 10% significance level in the latter case). Differently,
employment in services are unaffected. This reinforce our interpretation of our results as driven by hazard-induced depreciation and
capital substitution towards labor-saving technologies. The impacts of severe storms appear then to exacerbate pre-existing trends
of increasing income inequality (see, e.g., Piketty and Saez, 2014, among a large literature), as wages exhibit a lower average rate
of growth with respect to income—together with a lower variance, see Figure B.1.

Finally, we find that storm exposure has a negligible impact on housing prices (see Figure C.1). If anything, housing values
tend to increase slightly about five years after the event. This pattern aligns with the idea that storms necessitate maintenance
or accelerate the replacement of elements like roofs and windows, which may ultimately boost the selling price. Such an evidence
supports the view that storms exacerbate economic disparities by increasing the number of salary-months required to afford a home.

4.2. Robustness

We challenge the results in Section 4.1 with a series of robustness checks involving additional control variables, the specification
of fixed-effects included in the model, the number of lags of the exposure variable, alternative time periods, as well as a “placebo”
analysis based on different types of randomization, and a county sub-sampling exercise. Overall, our findings remain robust.

Control variables. Estimated impacts of storm exposure vary negligibly when additional control variables (i.e. other terms in
X;, of Eq. (7)) are included alongside population-weighted annual total precipitations and average temperatures (Tables B.3 and
B.4). Specifically, we added squares of the precipitation and temperature controls, to capture potential non-linearities in climate
impacts (Burke et al., 2015; Palagi et al., 2022); county-level growth rates for employment and population, to account for labor
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Fig. 5. Cumulative effects of severe thunderstorms (C,) for one pooled standard deviation of the exposure measure, on Annual Average Pay (wages) and Annual
Average Employment disaggregated by economic sectors, as estimated by Model (7). The exposure measure is S® (Egs. (5) and (6)). The number of lags
considered is p = 10. The climatic controls included are population-weighted county-level yearly total precipitations and average temperatures. The shaded areas
represent spatial and serial correlation robust Conley 95% confidence intervals (spatial cutoff 50 km, temporal cutoff 1 lag, Colella et al., 2023). In each panel,
the horizontal black dotted line at 0 represents the baseline trend for each county (a 0 effect indicates that a county follows its baseline trajectory after storm
exposure).

market dynamics; as well as lagged state-level active population (i.e. employed workforce over total population). Furthermore, even
when introducing the state-level lagged growth rate of the dependent variable (Annual Average Pay or Income per Capita) as an
extra control, results remain very similar to those obtained with the baseline model. This suggests that the consequences of storm
exposure primarily stem from highly localized (county-level) effects.

Fixed effects. The use of panel methodology is a crucial component of our empirical strategy. As discussed in Section 3.4, our
baseline model (Eq. (7)) includes county-level fixed effects, year fixed effects, and state-level trends. Concerning the latter, we run
Wald and F tests to assess the null hypothesis of state-level trends being inconsequential to our regression analysis (4 = 0). As shown
in Table 1, both tests strongly reject the null for both wages and income regressions. However, removing state-level trends from
our model does not substantially alter impact estimates for the wage regression, and only modestly modifies impact estimates for
the income regression, resulting in a positive long-term effect in line with the build back better hypothesis (Table B.5). Finally, our
results remain qualitatively unchanged even using a highly restrictive model incorporating state-year fixed effects, although with
such a model the estimates for the income regression are, understandably, less significant (Table B.5).

Time lags. Also altering the number of lags with which the exposure variable is included in our model (p in Eq. (7)) does not
fundamentally change our key findings (Table B.6). While increasing the number of lags is often recommended to mitigate the risk
of omitted variable bias (Greene, 2003; Hsiang and Jina, 2014), it also introduces greater statistical uncertainty and leads to a
larger number of dropped observations, thereby amplifying statistical noise. Impact estimates for the wage regression are largely
unchanged when using p = 8 or p = 12. On the other hand, while remaining consistent with the return to trend hypothesis, impact
estimates for the income regression exhibit a gradual reduction in size and statistical significance as the number of lags increases.

Temporal window. In a conservative spirit, we conducted additional checks by restricting our model fits to different temporal
windows within the 1991-2019 interval. While this reduces the number of observations and diminishes statistical power, it allows
us to assess whether our results are driven by dynamics specific to a particular time period. Table B.7 shows results obtained
across four different sub-samples (those outlined in Fig. 1C). Specifically, we consider two panels beginning in 1998 and in 2003,
respectively (to remove the first years of the sample containing fewer events); one dataset ending in 2008 (to remove the years of
the global financial crisis and its aftermath); and one dataset ending in 2012 (to exclude most recent years in our sample). Despite
the decrease in statistical significance due to the substantially smaller sample sizes, the results remain consistent with our baseline
estimates. Additionally, we notice that the different responses of wages and income are starker in samples ending in 2008 and 2012,
suggesting that more recent years have witnessed a lower asymmetry.

Placebo analysis. To further investigate potential misspecifications in our baseline model and validate our estimates, we conduct a
“placebo” analysis along the lines of Hsiang and Jina (2014). Specifically, we re-fit our baseline specification (Eq. (7)) after different
types of data randomizations. This approach allows us to gauge whether our findings could arise from spurious relationships or
biases due to the specification itself. In the first exercise we randomize storm exposures while keeping the dependent variables
(wages and income growth rates) fixed. Conversely, in the second exercise we keep storm exposures fixed and randomize the
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Fig. 6. Distributions of cumulative effects of severe thunderstorms in the short (C,;) and long (C),) run for one pooled standard deviation of the exposure
measure, on Annual Average Pay (wages) and Income per capita, obtained re-estimating Model (7) on randomized datasets. Randomization is carried out with
two different schemes: i) randomly re-assigning observations within each county (Within-county), or ii) randomly re-assigning observations across the entire
panel (Full Sample). Each randomization scheme is carried out on the exposure measure (Random Exposure) and, separately, on the dependent variable (Random
Economic Outcome), repeating randomization and subsequent estimation 1000 times. The exposure measure is S® (Egs. (5) and (6)). The number of lags
considered is p = 10. The climatic controls included are population-weighted county-level yearly total precipitations and average temperatures. Vertical dotted
black lines mark 0 and vertical dashed red lines mark the original estimates obtained fitting Model (7) without randomizing the data (Fig. 4 and Table 1). T-tests
comparing the means of the estimates obtained through randomization to the original estimates all yield p-values < 0.001.

dependent variables. Furthermore, for each exercise, we implement two different randomization schemes. In the Full Sample
randomization scheme, we scramble the whole set of values (exposures, or dependent variables) thereby introducing randomness
in both timing and location of the observations. This allows us to assess potential biases stemming from both temporal trends
(local or aggregate) and cross-sectional patterns (across counties). In the Within-county randomization scheme, we scramble the
time series (exposures, or dependent variables) separately within each county. This specifically targets potential biases stemming
from cross-sectional patterns (across counties). Fig. 6 displays the distribution of point estimates obtained through repeated re-fits of
Model (7) on datasets generated through the four combinations of variables being randomized (exposures, or dependent variables)
and randomization schemes being applied full sample, or within-county). Randomization and re-estimation are repeated 1000 times
for each configuration. Specifically, for each of the four combinations and for each dependent variable, we show estimates of the
cumulative effects of storm exposure in the short-run (6‘3) and in the long-run (C‘lo). The averages of all distributions are around 0,
and the original estimates (red dashed lines in Fig. 6) fall well to the left of the range of the randomized estimates, except for the
long-run effect on income (the original estimates for this effect where consistently non-significant in our multiple analyses). In all,
the “placebo” results demonstrate that our original estimates are highly unlikely to stem from the omission of time or location-time
specific terms.

Random sub-samples. To ascertain whether our results may be driven by a limited number of counties, we perform a sub-sampling
exercise, progressively excluding from the analysis increasing fractions of counties (10%, 20%, 30%, and 40%) selected at random.
For each fraction, we repeat random sub-sampling and the re-estimation of Model (7) 1000 times. As shown in Figure B.6, the larger
the fraction of counties excluded, the more uncertainty one has in effect estimates. Notwithstanding such an obvious effect related
to sample size, the averages of the distributions of effect estimates remain significantly different from 0, demonstrating that our
findings are not driven by a restricted subset of counties.

Pre-exposure coefficients. Although our model only relies on conditional independence, and our dependent variables (county-level
income and wage growth rates) are trendless, we enrich our distributed lag model with exposure leads to exclude pre-existing
diverging patterns between counties that are differently hit by storms, conditional on our controls (Schmidheiny et al., 2019).
As shown in Figure B.7, pre-exposure coefficients are not significant for both wages and income per capita, while post-exposure
estimates are very similar to those reported in Fig. 4, which hints to the robustness of our baseline estimates.
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Repeated storms. Due to the frequent occurrence of thunderstorms, counties may experience additional exposure to storm winds
while still recovering from the previous one. This could introduce bias if the dynamics induced by both exposure events do not
represent a linear combination of their individual effects (Zivin et al., 2023). To control for such a bias, we re-estimate Model (7)
on subsamples that specifically consider counties where significant exposures are both preceded and followed by periods of low or
absent exposures. We do so experimenting with different thresholds.* Following this strategy we attempt at aligning our approach
to an event study, though imperfectly. Indeed, storms are frequent and relatively mild events in the majority of contiguous US (as
shown in Fig. 1). Hence, contrary to the case of hurricanes (Zivin et al., 2023; Hsiang and Jina, 2014), it is impossible to find in our
dataset a large number of locations facing a single large exposure within a decade, which is what we would have needed to closely
mimic an event study or a diff-in-diff design.?* Given such limitation imposed by our data, the experiments we conduct confirm our
baseline results. As depicted in Figure B.8, while income tends to recover slightly faster than observed in Fig. 4, wage estimates are
largely uncharged, although the considerably smaller sample sizes lead to broadened confidence intervals. Overall, repeated years
of large exposure to storms induce effects that can be assimilated to a linear combination of single exposures.

Event-study difference-in-difference. As discussed above, our framework does not represent an ideal setup for an event-study
difference-in-difference approach (DiD). While related methods have progressed allowing for repeated (non-absorbing, De Chaise-
martin and d’Haultfoeuille, 2024), staggered (Callaway and Sant’Anna, 2021; Borusyak et al., 2024), or continuous (Callaway et al.,
2024) treatments, these approaches typically presuppose scenarios where treatments can be distinctly identified across units and
time. However, they can be extremely useful to test pre-existing trends. We attempt to approximate a DID setup by discretizing
our observations into treated and non-treated groups based on whether the county-year storm exposure (as measured by S*) is
simultaneously above the pooled median (thereby selecting relatively severe events) and above the within-county median (ensuring
the selection of events that exceed average local climatic conditions). We then apply the recent event-study difference-in-difference
estimator proposed by De Chaisemartin and d’Haultfoeuille (2024), which accounts for non-absorbing and staggered treatments,
making the setting more comparable to our distributed lag model. Results are presented in Figure B.9 and Table B.8. The patterns
observed in wages and income per capita closely mirror those obtained using the distributed lag model, both qualitatively and in
terms of magnitude. Moreover, all pre-event coefficients are statistically non-significant, whether assessed individually or jointly,
which confirms that the parallel trends assumption holds, consistent with the results obtained testing pre-event coefficients in the
distributed lag model (Figure B.7).

Spatial and temporal clustering. Standard errors for our baseline estimates are computed using Conley standard errors (Conley,
1999), with a spatial cutoff of 50 km (about the average diameter of a U.S. county), and allowing for arbitrary serial correla-
tion (Colella et al., 2023), with a temporal cutoff of one lag. This choice is based on the observation that only a small fraction of
counties show statistically significant auto-correlation beyond one period for both wage and income growth, as well as for storm
exposure S™ (see Table B.9). In Figure B.10, we present results for our baseline estimates allowing for a broader spatial clustering
(spatial cutoffs of 100 km and 150 km), Figure B.11 shows results allowing for a slower decay in the auto-correlation structure
(temporal cutoffs extending up to 5 lags), while Figure B.12 shows results varying both spatial and temporal cutoffs. In all these
scenarios, findings remain qualitatively unchanged.

Auto-correlation. We conclude this Section with an additional analysis addressing auto-correlations. Estimates from distributed
lag models may exhibit some degree of bias due to the presence of short-run serial correlation in growth rates. A common robustness
check involves introducing autoregressive terms in the estimated model. Following Cerra and Saxena (2008) and Hsiang and Jina
(2014), we augment our baseline Model (7) with additional autoregressive terms, up to the 4th degree. As shown in Table B.13,
this does not qualitatively change our results.

4.3. Spatial spillovers

Even highly localized events such as storm spells can induce economic effects that extend beyond the county where they occurred.
Indeed, climate anomalies have been shown to produce impacts that propagate along supply chains and adversely affect trade,
spreading to neighboring areas (Kotz et al., 2024). In this Section, we test the presence of relevant spillovers in neighboring counties.
We do so by estimating the spatial SLX model specified in Eq. (9). Such model allows us to disentangle direct impacts (pertaining
to the county where the event occurred) and local indirect impacts (extending to neighboring counties) (Halleck Vega and Elhorst,
2015).

Results shown in Fig. 7 reveal that storms trigger non-negligible indirect effects, whose qualitative behavior closely resembles
that of direct effects. Spatial spillovers are less pronounced and statistically significant than direct effect for wages. On the other
hand, they are approximately equal in magnitude to direct effects for income. This asymmetry is likely due to income being recorded
by place of residence, while wages are recorded by place of work. Consequently, storms may have more spatially clustered effects
on income than on wages due to commuting patterns. Notably, the direct effects for both wages and income are remarkably similar
in magnitude to impacts obtained in the baseline model (Fig. 4). This finding implies that our baseline estimates, which neglect
spatial spillovers, may be overly conservative. In addition, it reassures us that our baseline estimates did not capture geographically
spurious effects. Furthermore, Tables C.2 and C.3 show that when expanding the distance criterion used to define neighboring
counties (from less than 50 km to less than 100 km between centroids), the results remain substantially unchanged. This suggests
that spatial spillovers are confined and do not extend much beyond the most immediate neighboring areas. Finally, results remain
unaltered also with alternative weighting schemes (see Tables C.2 and C.3).

23 gee the caption of Figure B.8 for details.
24 Our framework is much more similar to the one used to investigate the effects of heatwaves and El Nino in on economic activities in Callahan and Mankin
(2022) and Callahan and Mankin (2023).
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Fig. 7. Cumulative effects of severe thunderstorms (C,) for one pooled standard deviation of the exposure measure, on Annual Average Pay (wages; Panel A)
and Income per capita (Panel B), as estimated by Model (9), capturing direct and indirect (to neighboring counties) effects. Neighbors are defined as those
counties with distance D among centroids lower than 50 km; spatial weighting matrix W scheme based on inverse distance among centroids D!, globally
standardized. Counties with no neighbors are removed from the dataset. The exposure measure is S® (Egs. (5) and (6)). The number of lags considered is
p = 10. The climatic controls included are population-weighted county-level yearly total precipitations and average temperatures. The shaded areas represent
spatial and serial correlation robust Conley 95% confidence intervals (spatial cutoff 50 km, temporal cutoff 1 lag, Colella et al., 2023). The horizontal black
dotted line at 0 represents the baseline trend for each county (a 0 effect indicates that a county follows its baseline trajectory after storm exposure). Full details
on estimates can be found in Tables C.2 and C.3.

4.4. Hailstorms

As an additional way to validate our findings, we perform a parallel analysis exploring the impacts of a distinct yet analogous
weather event recorded in the SED dataset: hailstorms. Although damages occur differently (thunderstorms cause damage mainly
through strong wind gusts and potential flash floods), this parallel analysis provides an opportunity to scrutinize the effects of a
detrimental meteorological phenomenon that bears some resemblance to thunderstorms—in terms of potential for property damage,
predominant type of harm and highly localized nature. Consequently, we anticipate that hailstorms will exhibit economic impacts
similar to those of thunderstorms.

Like thunderstorms, hailstorms are geographically confined and short-lived weather events. On average, they have a duration of
approximately one hour, and the distance between their starting and ending locations is typically between 20 and 30 km (Figure
A.1C). However, they differ from thunderstorms in terms of geographical distribution (Figure A.1A), as they primarily occur in the
Central part of the continental U.S.—while thunderstorm exposure is highest in the Eastern part of the country (Fig. 3). Notably,
we are thus investigating a comparable event whose strongest impacts are expected to affect areas characterized by a different
socio-economic context.

The magnitude of hailstorms is measured in terms of hailstone diameter. Accordingly, we construct an exposure measure that
serves as a proxy for the energy carried by the hailstorm. Specifically, we calculate the sum of the cubes of hailstone diameters
recorded in hailstorms that occurred in each county and year, as described in Eq. (4), thereby producing a measure directly related
to the volume of hail cubes. To ensure cross-county comparability, we then normalize using Eq. (6), resulting in a hail exposure
measure H® which is analogous to S® for thunderstorms—see Appendix A for additional details. In fact, the distribution of H®,
likewise that used for thunderstorms, exhibits a pronounced right skew (Figure A.1B).

Results for the fits of Model (7) with H® as the exposure measure are shown in Fig. 8. Like for thunderstorms, wages tend
to decline in the first three years following exposure, and then stabilize on a plateau. Effect estimates are generally statistically
significant (except for C,,), but the magnitude of the short-run decline is less pronounced with respect to thunderstorms (C; =
—0.069). For income, effect estimates are consistently positive but not statistically significant. Nevertheless, patterns for both wages
and income are qualitatively consistent with those observed for thunderstorms, and show that also hailstorms induce different
impacts on the two dependent variables.

4.5. Do income levels and long-term exposure matter?

After assessing the impacts of severe storms on economic activity, we investigate whether such impacts vary in significant and
meaningful ways across the counties in our panel—and in particular, whether counties present different degrees of resilience related
to income levels and long-term exposure—as these could be interpreted as evidence of differential response and adaptation ability.®
To this end, we employ Model (10), where exposures at all lags interact with a categorical variable representing groups of counties.

25 Here, we broadly refer to adaptation as the array of measures that a specific community can implement to mitigate the impacts of weather events.
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Fig. 8. Cumulative effects of hailstorms (C,) for one pooled standard deviation of the exposure measure, on Annual Average Pay (wages; red) and Income per
capita (blue), as estimated by Model (7). The exposure measure, based on hail size, is H® (Eqgs. (4) and (6)). The number of lags considered is p = 10. The
climatic controls included are population-weighted county-level yearly total precipitations and average temperatures. The shaded areas represent spatial and
serial correlation robust Conley 95% confidence intervals (spatial cutoff 50 km, temporal cutoff 1 lag, Colella et al., 2023). The horizontal black dotted line at
0 represents the baseline trend for each county (a 0 effect indicates that a county follows its baseline trajectory after storm exposure). Full details on estimates
can be found in Table C.8.

A broad literature emphasizes the role of income in shaping both resilience and adaptation to natural hazards. Indeed, richer
areas tend to absorb weather-related impacts more efficiently (e.g., due to more efficient institutions, higher savings, or spending
capacity), and economically disadvantaged areas can suffer from adaptation deficits or gaps (Fankhauser and McDermott, 2014).
Moreover, empirical evidence suggests a positive relationship between income and the demand for climate security (Bakkensen and
Mendelsohn, 2016). To examine this in the context of thunderstorms, we partition the counties in our panel into three distinct groups
based on their initial income level (below, between, or above the inter-quartile range of the income distribution in 1991; Fig. 9C) and
estimate Model (10). Our results do not display marked differences for what concerns impacts on wages (Fig. 9A). Counties in the
low, middle and upper range of the income distribution exhibit indistinguishable responses to storm exposure, essentially identical
to the pooled results shown in Fig. 4. However, there are notable differences in estimated impacts on income (Fig. 9B). The poorest
counties exhibit much larger contemporaneous impacts (éo = —0.272%, compared to —0.056% for medium-income counties and a
statistically not significant —0.038% for high-income counties), as well as short-run impacts (C; = —0.365%, compared to —0.136% for
medium-income counties and a statistically not significant —0.116% for high-income counties). Moreover, while medium- and high-
income counties do exhibit a return-to-trend behavior in the long run, poor counties remain significantly below their pre-exposure
levels, with a negative estimated long-run impact as large as €, = —0.404%.

Empirical studies have also provided evidence suggesting that historical exposure to natural hazards can stimulate adaptation
efforts to reduce losses. Fankhauser and McDermott (2014), Hsiang and Narita (2012), Neumayer et al. (2014), Schumacher and
Strobl (2011) and Plumper et al. (2010). However, other works (sse e.g., Bakkensen and Mendelsohn, 2016) have reported no
significant hazard-driven adaptation to hurricane-related damages in the United States. In the context of thunderstorms, counties
that frequently experience damaging winds could have invested more in preventive measures to contain damages and the negative
impact of severe weather events. To examine this hypothesis, we partition the counties in our panel into three distinct groups based
on their average historical exposure (below, between, or above the inter-quartile range of the distribution of average exposure,
where averages are taken over the period 1991-2019).2° Evidence of hazard-driven adaptation would be reflected in lower impact
estimates in classes with higher risk, i.e., higher average exposure. Our findings, consistent with Bakkensen and Mendelsohn (2016),
do not support such hypothesis, see Table C.5. Counties in the middle and upper range of the risk distribution exhibit estimates very
similar to the pooled results shown in Fig. 4, and counties in the low range of the risk distribution exhibit virtually no effect.?’”

26 To avoid possible issues of under-reporting of weather events and taking into account that year-on-year exposure to storms may vary significantly due to
intrinsic weather stochasticity, we decided to partition the data according to the historical average exposure within our full sample, and not according to the
intensity of storm activity in a given year.

27 Note that these counties are rarely affected by thunderstorms and essentially serve as a control group here; their minimal exposure does not generate
statistically detectable impacts.
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Fig. 9. Cumulative effects (C,) of severe thunderstorms for one pooled standard deviation of the exposure measure, on Annual Average Pay (wages; Panel A)
and Income per capita (Panel B), as estimated by Model (10) with dummies D,, = D, capturing three income groups (counties with 1991 income below, in and
above the inter-quartile range; Panel C shows the 1991 income distribution in 2012$ and on the logarithmic scale). The exposure measure is S, as defined in
Egs. (5) and (6). The number of lags considered in p = 10. The climatic controls included are population-weighted county-level yearly total precipitations and
average temperatures. The shaded areas represent spatial and serial correlation robust Conley 95% confidence intervals (spatial cutoff 50 km, temporal cutoff 1
lag, Colella et al., 2023). Horizontal black dotted lines at 0 in Panels A and B represent the baseline trend for each county (a 0 effect indicates that a county
follows its baseline trajectory after storm exposure). Full details on estimates can be found in Table C.4.

Taken together, our results suggest that severe storms may exacerbate income inequality not only through different impact
patterns on labor and capital incomes, but also through asymmetric effects across counties. While middle- and high-income counties
do return to trend in terms of income, poor counties—which may lack the capacity to effectively update their capital in response
to adverse events—do not. Poor counties may in fact lack the capacity to effectively update their capital in response to adverse
events, leading to a greater persistence of negative impacts on income. The observed differences in impacts may be influenced not
only by greater recovery capabilities, but also by higher adaptation efforts in wealthier counties, which are less income-constrained.
Nonetheless, our results do suggest that these differing efforts are not related to hazard risk.

4.6. The role of relief policies

Results shown in the previous Section suggest a possible link between local spending capacity and a form of resilience to the
impacts of thunderstorms. Relatedly, we next investigate whether public aid provided in the aftermath of storm events can affect
counties’ adaptation capabilities, and, more generally, our impact estimates.

A significant body of research has found a positive role for the aid provided by governments and international organizations in
limiting the impacts of major natural hazards (Davlasheridze and Miao, 2021; Deryugina, 2017; Hochrainer, 2009; Yang, 2008).
Given their localized and generally non-extreme nature, U.S. thunderstorms do not activate international assistance—but the most
disruptive ones can overwhelm the resources of local and state authorities, thus prompting federal intervention. Federal responses
to emergencies and disasters in the U.S. are typically the domain of the Federal Emergency Management Agency (FEMA). Upon
issuance of a formal disaster declaration, FEMA can activate its assistance programs® and provide financial means, resources and
expertise to support affected areas in their response and recovery efforts.

We thus employ the FEMA Disaster Declaration Summary (DDS) to identify events for which FEMA issued a disaster declaration.
To determine which storms were covered by FEMA, for each county we use a matching procedure between storm dates in the SED
database and disaster declaration dates in the FEMA record. Conservatively, we establish a match between a storm and a disaster
declaration only if the timeframes (starting and ending dates) reported for the hazard pertaining to the declaration by DDS fall
within those reported for the storm by SED (Figure A.2 provides a visual representation of the matching procedure). The disaster
entries selected for the matching procedure include only those categorized as explicitly labeled as storms (see Appendix A for more
information on data treatment).

We identify a total of 8436 storm events for which FEMA issued a disaster declaration, 4.13% of all storms in our dataset. Next,
since FEMA assistance is typically deployed for an extended period of time (often several months) and our panel data is aggregated
at the county-year level rather than at the storm level, we label any county-year in which at least one storm received FEMA support

28 These programs include Individual Assistance, Public Assistance, and Hazard Mitigation. The Individual Assistance program provides financial support to
affected individuals and households, while the Public Assistance program offers funding to local government and nonprofit organizations for recovery efforts
(e.g., covering facilities reparation costs). The Hazard Mitigation program focuses on reducing future disaster risks. In addition, Small Business Administration
(SBA) loans are often made available in conjunction with FEMA assistance programs. The SBA offers low-interest loans to homeowners, renters, and businesses
located in the affected region.
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Fig. 10. Cumulative effects (C,) of severe thunderstorms for one pooled standard deviation of the exposure measure, on Annual Average Pay (wages; Panel A)
and Income per capita (Panel B), as estimated by Model (10) with dummies D, capturing county-year pairs with FEMA interventions. The exposure measure is
S@ (Egs. (5) and (6)). The number of lags considered is p = 10. The climatic controls included are population-weighted county-level yearly total precipitations
and average temperatures. The shaded areas represent spatial and serial correlation robust Conley 95% confidence intervals (spatial cutoff 50 km, temporal
cutoff 1 lag, Colella et al., 2023). Horizontal black dotted lines at 0 in Panels A and B represent the baseline trend for each county (a 0 effect indicates that a
county follows its baseline trajectory after storm exposure). Full details on estimates can be found in Tables C.6 and C.7. More information on the identification
of county-year pairs associated with FEMA interventions can be found in Appendix A and Figure A.2.

as a “FEMA intervention” datum. There are 3641 county-year pairs, 5.21% of all pairs in our panel. We then employ a model akin
to Model (10) utilizing the categorical variable to separate county-years into “intervention” and “non-intervention” (see caption of
Fig. 10).

Fig. 10 suggests a remarkable effect of federal assistance on the estimated storm impact patterns: restricting attention to counties
and years where FEMA issued a disaster declaration, the impacts of storm exposure on both wages and income are close to 0 and
statistically non-significant across almost the entire impact period considered. The only exception is the contemporaneous impact
on wages (C,), which is significantly positive. This suggests that FEMA intervention quickly prompts an influx of resources which
sustain wage growth over the medium run. Reassuringly, for counties and years where FEMA did not issue a disaster declaration,
impact patterns are indistinguishable from the overall ones in Fig. 4—confirming that our main conclusions are not driven by a
small portion of extreme cases (i.e., counties-years with thunderstorms triggering disaster declarations).

We also tested whether our results could be influenced by spurious effects, such as counties-years experiencing other simultaneous
disasters that prompted FEMA intervention. We accordingly augmented our model controlling for FEMA interventions related to non-
wind-water-related events. Results (see Tables C.6 and C.7) are essentially indistinguishable from those in Fig. 10. As previously
mentioned, these results rely on a conservative matching procedure that identifies storm-disaster pairs only when disasters are
explicitly categorized as storms in DDS. However, when we expand our matching procedure to include disaster declarations involving
secondary hazards (e.g., floods or landslides that may occur as a consequence of a storm) and other more hazardous wind-water
related events, the estimates in the “FEMA intervention” group get closer to those in the “No FEMA intervention” group (see Tables
C.6 and C.7).

In summary, our findings show that FEMA interventions can play a crucial role in mitigating the adverse impacts of storms on
wages and income dynamics, potentially preventing any associated increases in income inequality. However, estimates obtained
when considering more hazardous water-wind related disaster declarations suggest that the effectiveness of interventions may
diminish as the severity of events increases—indicating that federal assistance might not fully offset the largest impacts.*

5. Conclusions

In this study, we examine the economic impacts of severe thunderstorms. While previous research has extensively analyzed the
impacts of extreme events such as hurricanes and tropical storms, our study is the first to provide a comprehensive analysis of
these less extreme, yet much more common and still pernicious weather events. We employ detailed information on over 200,000
severe storms occurred in the continental United States from 1991 to 2019, including wind speed and geolocation data, to create
physically-grounded storm exposure measures, and use these to fit distributed-lag models within a panel framework.

29 Due to the distinct categorization of events across SED and SSD datasets, we cannot rule out the possibility that disasters declaration not explicitly labeled
as storms—which we indeed excluded from our baseline estimates in Fig. 10—may refer to separate events occurring concurrently with a storm episode.
Consequently, our results related to larger events might underestimate the positive impact of FEMA intervention. See Appendix A for more information on SSD
labeling.
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Our analyses reveal significant negative economic effects associated with storm exposure. Specifically, we find that severe storms
considerably affect income, which then recovers over time consistent with a return to trend hypothesis. However, we also find that
severe storms lead to persistent declines in wages, exhibiting hysteresis and supporting a no recovery hypothesis. Jointly, these
results suggest that storm exposure can contribute to an increase in functional income inequality—likely by accelerating capital
obsolescence and the subsequent adoption of labor-saving technologies, which may explain the diverging trajectories observed for
wages and income. This is supported by our analyses disaggregated by economic sectors. In addition to a broad battery of robustness
checks, our main findings are also confirmed by a separate analysis of the impacts of hailstorms occurred in the U.S. between 1991
and 2019.

We also run analyses to investigate whether some communities may be better equipped than others to withstand the impacts
of storms. In particular, we find that economically disadvantaged counties experience larger and more enduring income losses,
suggesting that local spending capacity (and perhaps attitudes correlated with affluence) can help mitigate negative economic
impacts. In contrast, we do not find evidence of hazard-driven adaptation, i.e. of a reduction in economic impacts associated with
long-term exposure levels.

Finally, we investigate whether federal interventions can reduce the severity of economic impacts and foster more equitable
recoveries. Remarkably, the issuance of FEMA disaster declarations and the provision of aid do dampen the negative consequences
of severe storms on both income and wages, although such positive effects may not apply to the largest events.

Our work can be extended in several ways. Specifically, we intend to delve deeper into the impact of federal aid and related
support programs on shaping recovery trajectories post-hazardous events, with a particular focus on their role in fostering equitable
outcomes. Prior studies have indeed reached conflicting conclusions. While micro-econometric approaches reported evidence of
FEMA intervention worsening wealth inequality along lines of race, education and home ownership (Howell and Elliott, 2019), other
studies suggested instead a generally equitable allocation of FEMA relief funds (Domingue and Emrich, 2019). Our own observations
only pertain to the domain of functional income inequality, and are limited to a specific subset of relatively moderate weather
events. Further studies employing more disaggregated data will be needed to validate our findings and elucidate to what extent
federal interventions may promote equitable outcomes. Relatedly, we believe that extending the present analysis to the effects on
the full distribution of personal income is a promising avenue that could complement with finer-grained information a consolidating
body of evidence relying on country level data (Cappelli et al., 2021; Castells-Quintana and McDermott, 2023; Paglialunga et al.,
2022; Méjean et al., 2024; Gilli et al., 2024).
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