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 A B S T R A C T

Threshold policies are decision rules that assign treatments based on whether an observable 
characteristic exceeds a certain threshold. They are widespread across multiple domains, 
including welfare programs, taxation, and clinical medicine. This paper examines the problem 
of designing threshold policies using experimental data, when the goal is to maximize the 
population welfare. First, I characterize the regret – a measure of policy optimality – of the 
Empirical Welfare Maximizer (EWM) policy, popular in the literature. Next, I introduce the 
Smoothed Welfare Maximizer (SWM) policy, which improves the EWM’s regret convergence 
rate under an additional smoothness condition. The two policies are compared by studying 
how differently their regrets depend on the population distribution, and investigating their 
finite sample performances through Monte Carlo simulations. In many contexts, the SWM 
policy guarantees larger welfare than the EWM. An empirical illustration demonstrates how 
the treatment recommendations of the two policies may differ in practice.

1. Introduction

Treatments are rarely universally assigned. When their effects are heterogeneous across individuals, policymakers aim to target 
those who would benefit the most from specific interventions. Scholarships, for example, are awarded to students with high academic 
performance or financial need; tax credits are provided to companies engaged in research and development activities; medical 
treatments are prescribed to sick patients. Despite the potential complexity and multidimensionality of heterogeneous treatment 
effects, treatment eligibility criteria are often kept quite simple. This paper studies one of the most common of these simple 
assignment mechanisms: threshold policies, where the decision to assign the treatment is based on whether a scalar observable 
characteristic – referred to as the index – exceeds a specified threshold.

Threshold policies are ubiquitous, ranging across multiple domains. In welfare policies, they regulate the qualification for public 
health insurance programs through age (Card et al., 2008; Shigeoka, 2014) and anti-poverty programs through income (Crost 
et al., 2014). In taxation, they determine marginal rates through income brackets (Taylor, 2003). In clinical medicine, the referral 
for liver transplantation depends on whether a composite of laboratory values obtained from blood tests is beyond a certain 
threshold (Kamath and Kim, 2007). Even criminal offenses are defined through threshold policies: sanctions for Driving Under 
the Influence are based on whether the Blood Alcohol Content exceeds specific values.

Economists frequently study the outcomes of threshold policies, with the regression discontinuity design (RDD) being a widely 
used tool for causal inference. The RDD focuses on an ex-post evaluation of treatment effects at discontinuity points. In this paper, 
my perspective is different: I consider the ex-ante problem faced by a policymaker seeking to implement a threshold policy and 
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interested in maximizing the average social welfare, targeting individuals who would benefit from the treatment. Experimental data 
are available: how should they be used to design the threshold policy for the population?

Answering this question requires defining a criterion by which policies are evaluated. Since the performance of a policy depends 
on the unknown data distribution, the policymaker searches for a policy that behaves uniformly well across a specified family of data 
distributions (the state space). The regret of a policy is the (possibly) random difference between the maximum achievable welfare 
and the welfare it generates in the population. Policies can be evaluated considering their maximum expected regret (Manski, 2004; 
Hirano and Porter, 2009; Kitagawa and Tetenov, 2018; Athey and Wager, 2021; Mbakop and Tabord-Meehan, 2021; Manski, 2023), 
or other worst-case statistics of the regret distribution (Manski and Tetenov, 2023; Kitagawa et al., 2022). Once the criterion has 
been established, optimal policy learning aims to pinpoint the policy that minimizes it. Rather than directly tackling the functional 
minimization problem, following the literature, I consider candidate threshold policy functions and characterize some properties of 
their regret.

The first contribution of this paper is to show how to derive the asymptotic distribution of the regret for a given threshold 
policy. The underlying intuition is simple: threshold policies use sample data to choose the threshold, which is hence a random 
variable with a certain asymptotic behavior. A Taylor expansion establishes a map between the regret of a policy and its threshold, 
allowing one to characterize the asymptotic distribution of the regret through the asymptotic behavior of the threshold. This shifts 
the problem to characterizing the asymptotic distribution of the threshold estimator, simplifying the analysis as threshold estimators 
can be studied with common econometric tools.

I start considering the Empirical Welfare Maximizer (EWM) policy studied by Kitagawa and Tetenov (2018). They derive uniform 
bounds for the expected regret of the policy for various policy classes, where the policy class impacts the findings only in terms 
of its VC dimensionality. My approach is more specific, considering only threshold policies, but also more informative: leveraging 
the knowledge of the policy class, I characterize the asymptotic distribution of the regret. As mentioned above, this requires the 
derivation of the asymptotic distribution of the threshold for the EWM policy, which is non-standard: it exhibits the ‘‘cube root 
asymptotics’’ behavior studied in Kim and Pollard (1990). The convergence rate is 𝑛 1

3 , and the asymptotic distribution is of Chernoff 
(1964) type. The non-standard behavior and the unusual convergence rate are due to the discontinuity in the objective function and 
are reflected in the asymptotic distribution of the regret, and in its 𝑛 2

3  pointwise convergence rate.
My second contribution is hence the introduction of a novel threshold policy, the Smoothed Welfare Maximizer (SWM) policy. 

This approach modifies the Empirical Welfare Maximizer (EWM) policy by replacing the indicator function in its objective function 
with a smooth kernel. Under certain smoothness regularity assumptions, the threshold estimator for the SWM policy is asymptotically 
normal, and its regret achieves a pointwise convergence rate of 𝑛 4

5 . While this paper does not establish the optimality of this rate 
– meaning it does not determine whether the SWM policy attains the fastest possible convergence rate under the given regularity 
conditions – my results imply that, under the additional assumption, the SWM policy achieves a faster pointwise convergence rate 
than the EWM policy.

Building on these asymptotic results, I extend the comparison of the regrets with the EWM and the SWM policies beyond their 
convergence rates. My findings allow to compare the asymptotic distributions and investigate how differently they depend on the 
data distribution; theoretical results are helpful to inform and guide the Monte Carlo simulations, which confirm that the asymptotic 
results approximate the actual finite sample behaviors. Notably, the simulations confirm that the SWM policy may guarantee lower 
expected regret in finite samples.

To demonstrate the practical differences between the two policies, I present an empirical illustration considering a job-training 
treatment. In that context, the SWM threshold policy would recommend treating 66.2% of unemployed workers, as opposed to 
63.6% with the EWM policy. This difference of almost 3 percentage points is economically non-negligible.

1.1. Related literature

This paper relates to the statistical decision theory literature studying the problem of policy assignment with covariates (Manski, 
2004; Stoye, 2012; Kitagawa and Tetenov, 2018; Athey and Wager, 2021; Mbakop and Tabord-Meehan, 2021; Sun et al., 2021; 
Sun, 2021; Viviano and Bradic, 2023). My setting is mainly related to Kitagawa and Tetenov (2018) and Athey and Wager (2021), 
with some notable differences. Kitagawa and Tetenov (2018) study the EWM policy for policy classes with finite VC dimension. 
They derive finite sample bounds for the expected regret without relying on smoothness assumptions. Athey and Wager (2021) 
consider a double robust version of the EWM and allow for observational data. Under smoothness assumptions analogous to mine, 
they derive asymptotic bounds for the expected regret for policy classes with finite VC dimensions. Conversely, results in this paper 
apply exclusively to threshold policies, relying on a combination of the assumptions in Kitagawa and Tetenov (2018) and Athey and 
Wager (2021). The narrower focus allows for more comprehensive results: I derive the asymptotic distribution of the regret, rather 
than providing some bounds for the expected regret. A critical distinction lies in the different nature of the convergence rates. My 
results are valid pointwise, derived by leveraging additional assumptions on the data distribution. As a result, the rates I obtain for 
the EWM and SWM policies are faster than the √𝑛 rate reported as optimal by Kitagawa and Tetenov (2018) and Athey and Wager 
(2021). Their √𝑛 rate is, in fact, uniformly valid for a broader family of data distributions, including extreme cases (e.g., where 
conditional ATE is flat at the threshold) that are excluded from my analysis. Their uniform results may be viewed as a benchmark: 
when more structure is imposed on the problem and certain data distributions are excluded, the rates can be improved.

Optimal policy learning finds its empirical counterpart in the literature dealing with targeting, especially common in development 
economics. Recent studies rely on experimental evidence to decide who to treat in a data-driven way (Hussam et al., 2022; Aiken 
et al., 2022), even if Haushofer et al. (2022) pointed out the need for a more formalized approach to the targeting decision problem. 
2 
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The availability for the policymaker of appropriate tools to use the data in the decision process is probably necessary to guarantee 
a broader adoption of data-driven targeting strategies. Focusing on threshold policies, this paper explicitly formulates the decision 
problem, introduces implementable policies (the EWM and the SWM policy), and compares their asymptotic properties.

Turning to the threshold estimators, I already mentioned that the EWM policy exhibits the cube root of 𝑛 asymptotics studied 
by Kim and Pollard (1990), distinctive of several estimators in different contexts. Noteworthy examples are the maximum score 
estimator in choice models (Manski, 1975), the split point estimator in decision trees (Banerjee and McKeague, 2007), and the risk 
minimizer in classification problems (Mohammadi et al., 2005), among others. Specific to my analysis is the emergence of the cube 
root asymptotic within a causal inference problem relying on the potential outcomes model, which is then mirrored in the regret’s 
asymptotic distribution.

Addressing the cube root problem by smoothing the indicator in the objective function aligns closely with the strategy proposed 
by Horowitz (1992) for studying the asymptotic behavior of the maximum score estimator. Objective functions are nonetheless 
different, and in my context, I derive the asymptotic distribution for both the unsmoothed (EWM) and the smoothed (SWM) policies. 
This is convenient, as it allows me to compare not only the convergence rates but also the entire asymptotic distributions of the 
estimators and their regrets and study the asymptotic approximations in Monte Carlo simulations.

The rest of the paper is structured as follows. Section 2 introduces the problem and outlines my analytical approach. Section 3 
derives formal results for the asymptotic distribution of the EWM and SWM policies and their regrets. In Section 4, I investigate finite 
sample performance of the EWM and SWM policies through Monte Carlo simulations, while in Section 5 I consider the analysis of 
experimental data from the National Job Training Partnership Act (JTPA) Study to compare the practical implications of the policies. 
Section 6 concludes.

2. Overview of the problem

I consider the problem of a policymaker who wants to implement a binary treatment in a population of interest. Individuals are 
characterized by a vector of observable characteristics 𝐗 ∈ R𝑑 , on which the policymaker bases the treatment assignment choice. 
A policy is hence a map 𝜋(𝐱) ∶ R𝑑 → {0, 1}, from observable characteristics to the binary treatment status. The policymaker is 
utilitarian: its goal is to maximize the average welfare of the population. Indicating by 𝑌1 and 𝑌0 the potential outcomes with and 
without the treatment, population average welfare generated by a policy 𝜋 can be written as

𝑊 (𝜋) = E[𝑌1𝜋(𝐗) + 𝑌0(1 − 𝜋(𝐗))].

When treatment effects are heterogeneous, the same treatment can have opposite average effects across individuals with different 
𝐗’s. For this reason, the policy assignment may vary with 𝐗: the policymaker wants to target only those who benefit from being 
treated, to maximize the average welfare.

The policy learning literature has considered several classes 𝛱 of policy functions, such as linear eligibility indexes, decision 
trees, or monotone rules, discussed in Kitagawa and Tetenov (2018), Athey and Wager (2021) and Mbakop and Tabord-Meehan 
(2021). This paper focuses on threshold policies, a specific class of policy functions that can be represented as

𝜋(𝐗) = 𝜋(𝑋, 𝑡) = 𝟏{𝑋 > 𝑡}.

The threshold policy assigns the treatment whenever the scalar index 𝑋 ∈ R, one of the observable characteristics, exceeds a 
threshold 𝑡, the parameter to be chosen.

Threshold policies are widespread: they regulate, beyond others, organ transplants (Kamath and Kim, 2007), taxation (Taylor, 
2003), and access to social welfare programs (Card et al., 2008; Crost et al., 2014). Their key advantage seems to be simplicity: 
threshold policies are easy for eligible individuals to understand, simple for policymakers to implement and monitor, and transparent, 
with clearly defined eligibility criteria — unlike more opaque black-box algorithms. These factors often justify the use of threshold 
policies even when a more structured alternative policy class may theoretically deliver higher welfare. In practice, these alternatives 
require additional resources for implementation, adoption, and monitoring — potentially offsetting the welfare gains. Modeling this 
trade-off goes beyond the scope of this paper, where the restriction to the threshold policy class is taken as given and should not be 
interpreted as an endorsement of threshold policies. Nonetheless, it is worth noting that if the conditional average treatment effect 
(CATE) is monotone in 𝑋 and exhibits sign heterogeneity, as is often the case in applications, then the threshold policy is optimal 
among all policies that use only 𝑋 to assign the treatment.

I will focus on the case when the index 𝑋 is chosen before the experiment. Population welfare depends only on threshold 𝑡, and 
can be written as

𝑊 (𝜋) = 𝑊 (𝑡) = E[𝑌1𝟏{𝑋 > 𝑡} + 𝑌0𝟏{𝑋 ≤ 𝑡}].

Choosing the policy is equivalent to choosing the threshold. If the joint distribution of 𝑌1, 𝑌0, and 𝑋 were known, the policymaker 
would implement the policy with threshold 𝑡∗ defined as: 

𝑡∗ ∈ argmax
𝑡

E[𝑌1𝟏{𝑋 > 𝑡} + 𝑌0𝟏{𝑋 ≤ 𝑡}] (1)

which would guarantee the maximum achievable welfare 𝑊 (𝑡∗).
The problem described in Eq.  (1) is infeasible since the joint distribution of 𝑌1, 𝑌0, and 𝑋 is unknown. The policymaker observes 

an experimental sample 𝑍 = {𝑍 }𝑛 = {𝑌 ,𝐷 ,𝑋 }, where 𝑌  is the outcome of interest, 𝐷 the randomly assigned treatment status, 
𝑖 𝑖=1 𝑖 𝑖 𝑖

3 
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and 𝑋 the policy index. Experimental data, which allows to identify the conditional average treatment effect, are used to learn the 
threshold policy 𝑡𝑛 = 𝑡𝑛(𝑍), function of the observed sample.

Statistical decision theory deals with the problem of choosing the map 𝑡𝑛. First, it is necessary to specify the decision problem 
the policymaker faces. For any threshold policy 𝑡𝑛, define the regret (𝑡𝑛):

(𝑡𝑛) = 𝑊 (𝑡∗) −𝑊 (𝑡𝑛),

a measure of welfare loss indicating the suboptimality of policy 𝑡𝑛. The regret depends on the unknown data distribution: the 
policymaker specifies a state space, and searches for a policy that does well uniformly for all the data distributions in the state 
space. Following Manski (2004), statistical decision theory has mainly focused on the problem of minimizing the maximum expected 
regret, looking for a policy 𝑡𝑛 that does uniformly well on average across repeated samples.

Directly solving the constrained minimization problem of the functional supE[(𝑡𝑛)] is impractical: the literature instead focuses 
on considering a specific policy map and studying its properties, for example showing its rate optimality, through finite sample 
valid (Kitagawa and Tetenov, 2018) or asymptotic (Athey and Wager, 2021) arguments. Following this approach, I characterize 
and compare some properties for the regret of two different threshold policies, the Empirical Welfare Maximizer (EWM) policy, 
commonly studied in the literature, and the novel Smoothed Welfare Maximizer (SWM) policy.

Kitagawa and Tetenov (2018) derive finite sample bounds for the expected regret of the EWM policy for a wide range of policy 
function classes. In their results, the policy class 𝛱 affects the bounds only through its VC dimension, and the knowledge of 𝛱 is 
not further exploited. Conversely, I leverage the additional structure from the knowledge of the policy class and characterize the 
asymptotic distribution of the regret for the EWM and the SWM threshold policies, comparing how their regrets depend on the data 
distribution. My results could hence be of interest also when decision problems not involving the expected regret are considered, 
as in Manski and Tetenov (2023) and Kitagawa et al. (2022): I characterize the asymptotic behavior of regret quantiles, and the 
asymptotic distributions can be used to simulate expectations of their non-linear functions.

To derive my results, I take advantage of the link between a threshold policy function ̂𝑡𝑛 and its regret (𝑡𝑛). Let {𝑟𝑛} be a sequence 
such that 𝑟𝑛 → ∞ for 𝑛→ ∞, and suppose that 𝑟𝑛(𝑡𝑛 − 𝑡∗) converges to a non degenerate limiting distribution, i.e (𝑡𝑛 − 𝑡∗) = 𝑂𝑝(𝑟−1𝑛 ).

Assume function 𝑊 (𝑡) to be twice continuously differentiable, and consider its second-order Taylor expansion around 𝑡∗:

𝑊 (𝑡𝑛) = 𝑊 (𝑡∗) +𝑊 ′(𝑡∗)
⏟⏟⏟

=0

(

𝑡𝑛 − 𝑡∗
)

+ 1
2
𝑊 ′′(𝑡)

(

𝑡𝑛 − 𝑡∗
)2

where |𝑡 − 𝑡∗| ≤ |𝑡𝑛 − 𝑡∗|, and 𝑊 ′(𝑡∗) = 0 by optimality of 𝑡∗. The previous equation can be written as 

𝑟2𝑛(𝑡𝑛) =
1
2
𝑊 ′′(𝑡)

[

𝑟𝑛
(

𝑡𝑛 − 𝑡∗
)]2 , (2)

establishing a relationship between the convergence rates of 𝑡𝑛 and (𝑡𝑛), and between their asymptotic distributions. Eq. (2) 
therefore shows how the rate of convergence and the asymptotic distribution of regret (𝑡𝑛) can be studied through the rate of 
convergence and the asymptotic distribution of policy 𝑡𝑛. In the next section, I consider the EWM policy 𝑡𝑒𝑛 and the SWM policy 𝑡𝑠𝑛: 
through their asymptotic behaviors, I characterize the asymptotic distributions of their regrets (𝑡𝑒𝑛) and (𝑡𝑠𝑛).

Remark 1 (Ceteris Paribus Optimality). Following the literature in statistical decision theory, I assume that the experiment is 
conducted in a population with the same distribution as the one where the policy will be implemented. This implicitly assumes 
that individuals in the target population do not change their behavior in response to the policy — for instance, by altering their 
covariates to gain access to the treatment. In some contexts, this assumption may be unrealistic. Existing empirical studies on 
threshold policies highlight this issue: in regression discontinuity design, manipulation tests are specifically aimed at detecting such 
reactions to the policy. If manipulation occurs, it invalidates the optimality of the policy estimated in the experiment.

3. Formal results

Let 𝑌0 and 𝑌1 be scalar potential outcomes, 𝐷 the binary treatment assignment in the experiment, and 𝑋 the observable index. 
{𝑌0, 𝑌1, 𝐷,𝑋} are random variables distributed according to the distribution 𝑃 . They satisfy the following assumptions, which 
guarantee the identification of the optimal threshold: 

Assumption 1 (Identification). 
1.1 (No interference) Observed outcome 𝑌  is related with potential outcomes by the expression 𝑌 = 𝐷𝑌1 + (1 −𝐷)𝑌0.
1.2 (Unconfoundedness) Distribution 𝑃  satisfies 𝐷 ⟂⟂ (𝑌0, 𝑌1)|𝑋.
1.3 (Overlap) Propensity score 𝑝(𝑥) = E[𝐷|𝑋 = 𝑥] is assumed to be known and such that 𝑝(𝑥) ∈ (𝜂, 1 − 𝜂), for some 𝜂 ∈ (0, 0.5).
1.4 (Joint distribution) Potential outcomes (𝑌0, 𝑌1) and index 𝑋 are continuous random variables with joint probability density 

function 𝜑(𝑦0, 𝑦1, 𝑥), and marginal densities 𝜑0, 𝜑1, and 𝑓𝑥 respectively. Expectations E[𝑌0|𝑥] and E[𝑌1|𝑥], for 𝑥 in the support 
of 𝑋, exist.
4 
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Assumptions 1.1, 1.2, and 1.3 are standard assumptions in many causal models. Assumption 1.1 requires the outcome of each unit 
to depend only on their treatment status, excluding spillover effects. Assumption 1.2 requires random assignment of the treatment, 
conditionally on 𝑋. Assumption 1.3 requires that, for any value of 𝑋, there is a positive probability of observing both treated and 
untreated units. Probabilities of being assigned to the treatment may vary with 𝑋, allowing for stratified experiments.

Assumption 1.4 specifies the focus on continuous outcome and index. While it would be possible to accommodate discrete 𝑌0 and 
𝑌1, maintaining the continuity of 𝑋 remains essential. The arguments developed in this paper, in fact, are not valid for a discrete 
index: my focus is on studying optimal threshold policies in contexts where the probability of observing any value on the support 
of the index 𝑋 is zero, and the threshold must be chosen from a continuum of possibilities.

Under Assumption  1, optimal policy 𝑡∗ defined in (1) can be written as
𝑡∗ ∈ argmax

𝑡
E𝑃 [𝑌1𝟏{𝑋 > 𝑡} + 𝑌0𝟏{𝑋 ≤ 𝑡}]

= argmax
𝑡

E𝑃
[(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝟏{𝑋 > 𝑡}
]

and is hence identified. This standard result specifies under which conditions an experiment allows to identify 𝑡∗.

3.1. Empirical Welfare Maximizer policy

Policymaker observes an i.i.d. random sample 𝑍 = {𝑌𝑖, 𝐷𝑖, 𝑋𝑖} of size 𝑛 from 𝑃 , and considers the Empirical Welfare Maximizer 
policy 𝑡𝑒𝑛, the sample analog of 𝑡∗ in Eq.  (1)1: 

𝑡𝑒𝑛 = argmax𝑡

1
𝑛

𝑛
∑

𝑖=1

(

𝐷𝑖𝑌𝑖
𝑝(𝑋𝑖)

𝟏{𝑋𝑖 > 𝑡} +
(1 −𝐷𝑖)𝑌𝑖
(1 − 𝑝(𝑋𝑖))

𝟏{𝑋𝑖 ≤ 𝑡}
)

. (3)

Policy 𝑡𝑒𝑛 can be seen as an extremum estimator, maximizer of a function not continuous in 𝑡.

3.1.1. Consistency of 𝑡𝑒𝑛
First, I will prove that 𝑡𝑒𝑛 consistently estimates the optimal threshold 𝑡∗, implying that (𝑡𝑒𝑛) →

𝑝 0. To prove this result, I need 
the following assumptions on the data distribution.

Assumption 2 (Consistency). 
2.1 (Maximizer 𝑡∗) Maximizer 𝑡∗ ∈   of E[(𝑌1 −𝑌0)𝟏{𝑋 > 𝑡}] exists and is unique. It is an interior point of the compact parameter 

space  ⊆ R.
2.2 (Square integrability) Conditional expectations E[𝑌 2

0 |𝑋] and E[𝑌 2
1 |𝑋] exist.

2.3 (Smoothness) In a neighborhood of 𝑡∗, density 𝑓𝑥(𝑥) is positive, and function E[(𝑌1 − 𝑌0)𝟏{𝑋 > 𝑡}] is at least 𝑠-times 
continuously differentiable in 𝑡.

By requiring the existence of the optimal threshold in the interior of the parameter space, Assumption 2.1 is assuming 
heterogeneity in the sign of the conditional average treatment effect E[𝑌1 − 𝑌0|𝑋]. It is because of this heterogeneity that the 
policymaker implements the threshold policy, targeting groups that would benefit from being treated. The assumption neither 
excludes the multiplicity of local maxima, as long as the global one is unique, nor excludes unbounded support for 𝑋, but requires 
the parameter space to be compact. Uniqueness of the maximizer is not required in the standard analysis of the EWM policy, where 
partial identification of the optimal policy is allowed. A sufficient condition for Assumption 2.1, easy to interpret and plausible in 
many applications, is that the conditional average treatment effect has negative and positive values, and crosses zero exactly once.

Assumption 2.2 requires that the conditional potential outcomes have finite second moments and is satisfied when 𝑌  is assumed 
to be bounded (as in Kitagawa and Tetenov, 2018).

Assumption 2.3 will be used with increasing values of 𝑠 to prove different results. To prove consistency, it needs to hold for 
𝑠 = 0, requiring the continuity of the objective function 𝑊 (𝑡) in a neighborhood of 𝑡∗. The derivative of E[(𝑌1 − 𝑌0)𝟏{𝑋 > 𝑡}] with 
respect to 𝑡 is equal to −𝑓𝑥(𝑡)𝜏(𝑡), where 𝜏(𝑥) = E[𝑌1 − 𝑌0|𝑋 = 𝑥] is the conditional average treatment effect. Assumption 2.3 with 
𝑠 ≥ 1 hence requires smoothness of 𝑓𝑥(𝑥) and 𝜏(𝑥), in a neighborhood of 𝑡∗.

The following theorem proves the consistency of 𝑡𝑒𝑛 for 𝑡∗.

Theorem 1.  Consider the EWM policy 𝑡𝑒𝑛 defined in Eq.  (3) and the optimal policy 𝑡∗ defined in Eq.  (1). Under Assumptions  1 and 2 
(with 𝑠 = 0),

𝑡𝑒𝑛 →
𝑎.𝑠. 𝑡∗

i.e. 𝑡𝑒𝑛 is a strongly consistent estimator for 𝑡∗.

1 The objective function is piecewise constant, so solving the optimization problem requires evaluating the function 𝑛 + 1 times. The solution is the convex 
set of points in R that achieve the maximum of these values.
5 
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3.1.2. Asymptotic distribution for 𝑡𝑒𝑛
The fact that 𝑡𝑒𝑛 is the maximizer of a function not continuous in 𝑡 directly affects the convergence rate and the asymptotic 

distribution. The EWM policy 𝑡𝑒𝑛 exhibits the ‘‘cube root asymptotics’’ behavior studied in Kim and Pollard (1990), the same as, 
beyond others, the maximum score estimator (Manski, 1975), and the split point estimator in decision trees (Banerjee and McKeague, 
2007).

The limiting distribution is not Gaussian, and its derivation requires two additional regularity conditions on 𝑃 :

Assumption 3 (Asymptotic Distribution). 

3.1 (Non-flat 𝜏(𝑋)) In a neighborhood of 𝑡∗, the derivative of the conditional average treatment effect, 𝜕E
[

𝑌1−𝑌0|𝑋
]

𝜕𝑋 , is non-zero.
3.2 (Tail condition) Let 𝜑1 and 𝜑0 be the probability density functions of 𝑌1 and 𝑌0. Assume that, as |𝑦| → ∞, 𝜑1(𝑦) = 𝑜(|𝑦|−(4+𝛿))

and 𝜑0(𝑦) = 𝑜(|𝑦|−(4+𝛿)), for 𝛿 > 0.

Assumption 3.1 requires that, close to the maximizer 𝑡∗, the conditional average treatment effect function 𝜏(𝑋) is not flat. If 𝜏(𝑋)
were flat in the neighborhood of 𝑡∗, it would be harder for the estimator to find the exact maximizer, leading to a slower rate of 
convergence. The excluded flat 𝜏(𝑋) corresponds to a situation where estimating the threshold precisely is less critical, as the CATE 
remains zero even in a neighborhood of the optimal threshold.

Assumption 3.2 requires that the tails of the distributions of the potential outcomes are not too fat. It is generally satisfied by any 
bounded distribution, and by distributions in the exponential family, while is violated, for example, by the Student’s t-distribution 
with fewer than four degrees of freedom.

The following theorem gives the asymptotic distribution of 𝑡𝑒𝑛.

Theorem 2.  Consider the EWM policy 𝑡𝑒𝑛 defined in Eq.  (3) and the optimal policy 𝑡∗ defined in Eq.  (1). Under Assumptions  1, 2 (with 
𝑠 = 2), and 3, as 𝑛→ ∞,

𝑛1∕3
(

𝑡𝑒𝑛 − 𝑡
∗) →𝑑 (2

√

𝐾∕𝐻)
2
3 argmax

𝑟

(

𝐵(𝑟) − 𝑟2
)

where 𝐵(𝑟) is the two-sided standard Brownian motion process, and 𝐾 and 𝐻 are

𝐾 =𝑓𝑥(𝑡∗)
(

1
𝑝(𝑡∗)

E[𝑌 2
1 |𝑋 = 𝑡∗] + 1

1 − 𝑝(𝑡∗)
E[𝑌 2

0 |𝑋 = 𝑡∗]
)

𝐻 =𝑓𝑥(𝑡∗)

(

𝜕E
[

𝑌1 − 𝑌0|𝑋 = 𝑡∗
]

𝜕𝑋

)

.

The limiting distribution of 𝑛1∕3 (𝑡𝑒𝑛 − 𝑡∗
) is of Chernoff type (Chernoff, 1964). The Chernoff’s distribution is the probability 

distribution of the random variable argmax𝑟 𝐵(𝑟) − 𝑟2, where 𝐵(𝑟) is the two-sided standard Brownian motion process. The process 
𝐵(𝑟) − 𝑟2 can be simulated, and the distribution of argmax𝑟 𝐵(𝑟) − 𝑟2 numerically studied. Groeneboom and Wellner (2001) report 
values for selected quantiles.

It is worth noticing how the variance of 𝑡𝑒𝑛 depends on the data distribution. 𝐾 and 𝐻 are functions of the density of 𝑋, the 
variance of the potential outcomes, and the derivative of the CATE at 𝑡∗. The optimal threshold is estimated with more precision 
when more data around the optimal threshold are available (larger density), when the treatment effect changes more rapidly (larger 
derivative of CATE), and when the outcomes have less variability.

Results in Theorem  2 can be used to derive asymptotic valid confidence intervals for 𝑡𝑒𝑛, as discussed in Appendix  A. More 
interestingly, they can be combined with Eq.  (2) to characterize the asymptotic distribution of the regret (𝑡𝑒𝑛), as derived in the 
following corollary.

Corollary 2.1.  The asymptotic distribution of regret (𝑡𝑒𝑛) is:

𝑛
2
3 (𝑡𝑒𝑛) →

𝑑
(

2𝐾2

𝐻

)
1
3
(

argmax
𝑟

𝐵(𝑟) − 𝑟2
)2

.

The expected value of the asymptotic distribution is 𝐾 2
3𝐻− 1

3 𝐶𝑒, where

𝐶𝑒 = 3
√

2E

[

(

argmax
𝑟

𝐵(𝑟) − 𝑟2
)2

]

is a constant not dependent on 𝑃 .

For the regret of the EWM policy, Corollary  2.1 establishes a 𝑛 2
3  rate, faster than the √𝑛 rate found to be the optimal for the 

EWM expected regret (Kitagawa and Tetenov, 2018). It is essential to highlight the differences between the two results: Corollary 
2.1 is about pointwise convergence in distribution, while the main results by Kitagawa and Tetenov (2018) establish a uniform rate 
for the expected regret. The family of distributions they consider may violate the assumptions in Theorem  2, for example including 
cases where the CATE is flat at the optimal threshold. In contrast, Corollary  2.1 is derived for distributions that satisfy Assumptions 
1–3, which imply 𝐻 ≠ 0.
6 



F. Crippa Journal of Econometrics 249 (2025) 105998 
Kitagawa and Tetenov (2018) also discuss how additional assumptions on the distribution 𝑃  can lead to a faster convergence 
rate for the regret. They show that if a certain margin condition on the data distribution holds, the convergence rate can improve. 
When the CATE function 𝜏(𝑋) is non-flat, the regret achieves a uniform convergence rate of 𝑛 2

3 . Although the two rates are the same 
and rely on a similar condition on the CATE, they are derived from different, non-nested sets of assumptions. For instance, Kitagawa 
and Tetenov (2018) assume that the policy class is correctly specified and 𝑌  is bounded, but do not require the CATE to be smooth. 
The fact that my pointwise convergence rate coincides with their uniform rate when all assumptions are met suggests that my rate 
for the EWM threshold policy is also uniformly optimal.

The result in Corollary  2.1 does not imply convergence in the mean, and the expected value of the asymptotic distribution is 
presented as a summary statistic – a measure of the location of the asymptotic distribution.

3.2. Smoothed Welfare Maximizer policy

Corollary  2.1 shows how the cube root of 𝑛 convergence rate of the EWM policy directly impacts the convergence rate of its 
regret. In this section, I propose an alternative threshold policy, the Smoothed Welfare Maximizer policy, that achieves a faster rate 
of convergence and hence guarantees a faster rate of convergence for its regret. My approach exploits some additional smoothness 
assumptions on the distribution 𝑃 : Corollary  2.1 holds when 𝑓𝑥(𝑥) and 𝜏(𝑥) are assumed to be at least once differentiable; if they 
are at least twice differentiable, the SWM policy guarantees a 𝑛 4

5  convergence rate for the regret. Note that asking the density of the 
index and the conditional average treatment effect to be twice differentiable seems plausible for many applications. In the context 
of policy learning, it is, for example, assumed by Athey and Wager (2021) to derive their results.2

My approach involves smoothing the objective function in (3), in the same spirit as the smoothed maximum score estimator 
proposed by Horowitz (1992) to deal with inference for the maximum score estimator (Manski, 1975). The Smoothed Welfare 
Maximizer (SWM) policy 𝑡𝑠𝑛 is defined as3: 

𝑡𝑠𝑛 = argmax𝑡

1
𝑛

𝑛
∑

𝑖=1

[(

𝐷𝑖𝑌𝑖
𝑝(𝑋𝑖)

−
(1 −𝐷𝑖)𝑌𝑖
(1 − 𝑝(𝑋𝑖))

)

𝑘
(

𝑋𝑖 − 𝑡
𝜎𝑛

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑆̂𝑛(𝑡,𝜎𝑛)

(4)

where 𝜎𝑛 is a sequence of positive real numbers such that lim𝑛→∞ 𝜎𝑛 = 0, and the function 𝑘(⋅) satisfies: 

Assumption 4 (Kernel Function).  Kernel function 𝑘(⋅) ∶ R → R is continuous, bounded, and with limits lim𝑥→−∞ 𝑘(𝑥) = 0 and 
lim𝑥→∞ 𝑘(𝑥) = 1.

In practice, the indicator function found in 𝑡𝑒𝑛 is here substituted by a smooth function 𝑘(⋅) with the same limiting behavior, 
which guarantees the differentiability of the objective function. The bandwidth 𝜎𝑛, decreasing with the sample size, ensures that 
when 𝑛→ ∞ the policy converges to the optimal one, as proved in the next section.

3.2.1. Consistency of 𝑡𝑠𝑛
I start showing consistency of 𝑡𝑠𝑛 for 𝑡∗, which implies (𝑡𝑠𝑛) →

𝑝 0.

Theorem 3.  Consider the SWM policy 𝑡𝑠𝑛 defined in Eq.  (4) and the optimal policy 𝑡∗ defined in Eq.  (1). Under Assumptions  1, 2 (with 
𝑠 = 0), and 4, as 𝑛→ ∞,

𝑡𝑠𝑛 →
𝑎.𝑠. 𝑡∗

i.e. 𝑡𝑠𝑛 is a strongly consistent estimator for 𝑡∗.
Theorems  3 and 1 are analogous: they rely on the same assumptions on the data (Assumptions  1 and 2) to prove the consistency 

of 𝑡𝑒𝑛 and 𝑡𝑠𝑛. Where the two policies differ is in the asymptotic distributions: smoothness in the objective function for 𝑡𝑠𝑛 guarantees 
asymptotic normality, but also introduces a bias, since the bandwidth 𝜎𝑛 equals zero only in the limit, which emerges in the limiting 
distribution.

3.2.2. Asymptotic distribution for 𝑡𝑠𝑛
Deriving this asymptotic behavior of 𝑡𝑠𝑛 requires an additional assumption on the rate of bandwidth 𝜎𝑛 and the kernel function 

𝑘. Since both are chosen by the policymaker, the assumption is not a restriction on the data but a condition on properly picking 𝜎𝑛
and 𝑘.

Assumption 5 (Bandwidth and Kernel). 

2 This assumption is implied by the high-level assumptions made in the paper, as the authors discuss in footnote 15.
3 The objective function is continuous and smooth in 𝑡, which allows for the use of gradient descent algorithms. However, the function is not concave and 

may have many local maxima. Annealing algorithms can be employed to find the global maximum.
7 
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5.1 (Rate of 𝜎𝑛) log 𝑛𝑛𝜎4𝑛
→ 0 as 𝑛→ ∞.

5.2 (Kernel function) Kernel function 𝑘(⋅) ∶ R → R satisfies Assumption  4 and the following:

• 𝑘(⋅) is twice differentiable, with uniformly bounded derivatives 𝑘′ and 𝑘′′.
• ∫ 𝑘′(𝑥)4𝑑𝑥, ∫ 𝑘′′(𝑥)2𝑑𝑥, and ∫ |𝑥2𝑘′′(𝑥)|𝑑𝑥 are finite.
• For some integer ℎ ≥ 2 and each integer 𝑖 ∈ [1, ℎ], ∫ |𝑥𝑖𝑘′(𝑥)|𝑑𝑥 = 0 for 𝑖 < ℎ and ∫ |𝑥ℎ𝑘′(𝑥)|𝑑𝑥 = 𝑑 ≠ 0, with 𝑑 finite.
• For any integer 𝑖 ∈ [0, ℎ], any 𝜂 > 0, and any sequence 𝜎𝑛 → 0, lim𝑛→∞ 𝜎𝑖−ℎ𝑛 ∫

|𝜎𝑛𝑥|>𝜂
|𝑥𝑖𝑘′(𝑥)|𝑑𝑥 = 0, and 

lim𝑛→∞ 𝜎−1𝑛 ∫
|𝜎𝑛𝑥|>𝜂

|𝑘′′(𝑥)|𝑑𝑥 = 0.
• ∫ 𝑥𝑘′′(𝑥)𝑑𝑥 = 1, lim𝑛→∞ ∫

|𝜎𝑛𝑥|>𝜂
|𝑥𝑘′′(𝑥)|𝑑𝑥 = 0.

An example of a function 𝑘 satisfying Assumption 5.2 with ℎ = 2 is the cumulative distribution function of the standard normal 
distribution.

I can now derive the asymptotic distribution of 𝑡𝑠𝑛. 

Theorem 4.  Consider the SWM policy 𝑡𝑠𝑛 defined in Eq.  (4) and the optimal policy 𝑡∗ defined in Eq.  (1). Under Assumptions  1, 2 (with 
𝑠 = ℎ + 1 for some ℎ ≥ 2), 3.1, and 5, as 𝑛→ ∞:

1. if 𝑛𝜎2ℎ+1𝑛 → ∞,

𝜎−ℎ𝑛 (𝑡𝑠𝑛 − 𝑡
∗) →𝑝 𝐻−1𝐴;

2. if 𝑛𝜎2ℎ+1𝑛 → 𝜆 < ∞,

(𝑛𝜎𝑛)
1
2 (𝑡𝑠𝑛 − 𝑡

∗) →𝑑  (𝜆
1
2𝐻−1𝐴,𝐻−2𝛼2𝐾);

where 𝐴, 𝛼1, and 𝛼2 are:

𝐴 = − 1
ℎ!
𝛼1 ∫𝑦

(

𝑌1 − 𝑌0
)

𝜑ℎ𝑥(𝑦, 𝑡
∗)𝑑𝑦

𝛼1 =∫𝜁
𝜁ℎ𝑘′ (𝜁 ) 𝑑𝜁

𝛼2 =∫𝜁
𝑘′ (𝜁 )2 𝑑𝜁.

The asymptotic distribution of (𝑛𝜎𝑛)
1
2 (𝑡𝑠𝑛 − 𝑡

∗) is normal, centered at the asymptotic bias 𝜆 1
2𝐻−1𝐴 introduced by the smoothing 

function, which exploits local information giving non-zero weights to treated units in the untreated region and vice versa. The bias 
and the variance of the distribution depend on the population distribution through 𝐾 and 𝐻 , as for the EWM policy, and also 
through 𝐴, a new term that determines the bias. In the definition of 𝐴, 𝜑ℎ𝑥 is the ℎ derivative with respect to 𝑥 of 𝜑(𝑦0, 𝑦1, 𝑥), the 
joint density distribution of 𝑌0, 𝑌1, and 𝑋: the integral in the expression for 𝐴 is the ℎ-derivative of 𝑓𝑥(𝑋)𝜏(𝑋) computed in 𝑋 = 𝑡∗, 
whose existence is guaranteed by Assumption 2.3 with 𝑠 = ℎ+1. 𝛼1 and 𝛼2 depends only on kernel function 𝑘, and are hence known.

Theorems  2 and 4 differ in the smoothness requirements imposed by Assumption 2.3. Theorem  2 requires the function 
E[(𝑌1 − 𝑌0)𝟏{𝑋 > 𝑡}] to be at least twice differentiable, while Theorem  4 requires three derivatives. The additional smoothness 
condition is necessary because certain steps in the proof rely on a Taylor expansion of the joint distribution of 𝑌  and 𝑋 which 
requires 𝑠 ≥ 3 to exist. When 𝑠 = 2, the asymptotic distribution derived in Theorem  4 for 𝜕𝑆̂𝑛(𝑡

𝑠
𝑛 ,𝜎𝑛)

𝜕2𝑡
(𝑛𝜎𝑛)

1
2 (𝑡𝑠𝑛 − 𝑡

∗) no longer holds, as 
𝜕𝑆̂𝑛(𝑡𝑠𝑛 ,𝜎𝑛)

𝜕2𝑡
, the second derivative of the objective function in the SWM policy definition (Eq.  (4)), may not have a bounded limiting 

distribution. However, if such a bounded limiting distribution, denoted by 𝐻̃ , exists, then (𝑛𝜎𝑛)
1
2 (𝑡𝑠𝑛 − 𝑡

∗) remains 𝑂𝑝(1) even when 
𝑠 = 2, with an asymptotic distribution that depends on the unknown term 𝐻̃ rather than on 𝐻 , as in Theorem  4.

As for the EWM policy, results in Theorem  4 can be used to derive asymptotic valid confidence intervals for 𝑡𝑠𝑛 (see Appendix 
A), and, combined with Eq.  (2), to characterize the asymptotic distribution of the regret (𝑡𝑠𝑛), as derived in the next corollary.

Corollary 4.1.  Asymptotic distribution of regret (𝑡𝑠𝑛) is:

𝑛𝜎𝑛(𝑡𝑠𝑛) →
𝑑 1
2
𝛼2𝐾
𝐻

𝜒2
(

1, 𝜆𝐴
2

𝛼2𝐾

)

where 𝜒2
(

1, 𝜆𝐴
2

𝛼2𝐾

)

 is a non-centered chi-squared distribution with 1 degree of freedom and non-central parameter 𝜆𝐴2

𝛼2𝐾
. The expected value 

of the asymptotic distribution is:
1 𝛼2𝐾

(

1 + 𝜆𝐴2 )

=
𝛼2 𝐾 + 1 𝜆𝐴2

.

2 𝐻 𝛼2𝐾 2 𝐻 2 𝐻

8 
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Table 1
Parameters values for the simulation models.
 Model 𝛾 𝛽1 𝛽2 𝑝  
 1 1 1 −0.5 0.5 
 2 3 0.5 −1 0.5 

Let 𝜎𝑛 = (𝜆∕𝑛)1∕(2ℎ+1) with 𝜆 ∈ (0,∞). The expectation of the asymptotic regret is minimized by setting 𝜆 = 𝜆∗ = 𝛼2𝐾
2ℎ𝐴2 : in this case, the 

expectation of the asymptotic distribution scaled by 𝑛
2ℎ

2ℎ+1  is 𝐴
2

2ℎ+1𝐾
2ℎ

2ℎ+1𝐻−1𝐶𝑠, where 𝐶𝑠 = 2ℎ+1
2

(

𝛼2
2ℎ

)
2ℎ

2ℎ+1  is a constant not dependent on 
𝑃 .

With the optimal bandwidth 𝜎𝑛 = 𝑂𝑝(𝑛
− 1

2ℎ+1 ), the regret converges at 𝑛
2ℎ

2ℎ+1  rate. For ℎ ≥ 2, this implies that the regret converges 
faster with the SWM than with the EWM policy: the extra smoothness assumption has been exploited to achieve a better rate for 
the asymptotic regret. When ℎ = 1, if additional regularity assumptions ensure the existence of 𝐻̃ , the SWM policy attains the same 
convergence rate as the EWM policy. As for Corollary  2.1, the result in Corollary  4.1 does not imply convergence in the mean, and 
the expected value of the asymptotic distribution is reported as a measure of the location of the asymptotic distribution.

The comparison between Corollaries  2.1 and 4.1, which characterize the asymptotic distributions of regrets (𝑡𝑒𝑛) and (𝑡𝑠𝑛), 
highlights how the data distribution 𝑃  differently influences the asymptotic behavior of the regrets through 𝐻 , 𝐾, which affect 
both distributions but with different exponents, and 𝐴, the bias term that affects only the SWM policy. The relevance of these 
asymptotic results relies on their ability to approximate behaviors in finite samples. After all, policymakers only have access to 
finite experimental data. Building on the theoretical results derived above, the next section uses Monte Carlo simulations to analyze 
the finite-sample regrets associated with the EWM and SWM policies.

4. Monte Carlo simulations

I examine the finite sample properties of the EWM and SWM policies using Monte Carlo simulations. The scope of this section 
is twofold: first, I will provide examples of data generating processes that lead to different rankings for the two policies in terms of 
median asymptotic regret, to illustrate how in the asymptotic results in Corollaries  2.1 and 4.1 the convergence rate and the limiting 
distribution interact. Then, I will verify how the asymptotic results approximate the finite sample distributions, and compare the 
finite sample regrets of the two policies.

As data generating process, consider the following distribution 𝑃  of (𝑌0, 𝑌1, 𝐷,𝑋):

𝑋 ∼  (0, 1)

𝜖1 ∼  (0, 𝛾)

𝑌1 = 𝑋3 + 𝛽2𝑋2 + 𝛽1𝑋 + 𝜖1
𝑌0 ∼  (0, 𝛾)

𝐷 ∼ Bern(𝑝).

Under 𝑃 , the potential outcome 𝑌0 does not depend on the index 𝑋, and the treatment is randomly assigned with constant probability 
𝑝. Parameter values are chosen such that E[𝑌1|𝑋 = 𝑥] and hence E[𝑌1 − 𝑌0|𝑋 = 𝑥] are increasing function of 𝑥, and the optimal 
threshold 𝑡∗ is 0. It can be verified that such 𝑃  implies the following:

𝐾 =𝜙(0)
(

𝛾2

𝑝
+

𝛾2

1 − 𝑝

)

𝐻 =𝜙(0)𝛽1
𝐴 = − 𝜙(0)𝛽2

𝑊 (𝑡) =𝛽2 (1 −𝛷(𝑡) + 𝑡𝜙(𝑡)) + 𝛽1𝜙(𝑡) +
(

𝑡2𝜙(𝑡) + 2𝜙(𝑡)
)

where 𝜙(𝑡) and 𝛷(𝑡) are the probability density function and the cumulative density function of the standard normal distribution, 
respectively.

I consider two models characterized by different parameter values, reported in Table  1.
For the SWM policy, the kernel function is the cumulative distribution function of the standard normal distribution, which 

satisfies Assumption 5.2 with ℎ = 2. Consequently, all analyses are conducted under Assumption  2 with 𝑠 = ℎ + 1 = 3. Asymptotic 
regrets are computed with the infeasible optimal bandwidth 𝜎∗𝑛 . Table  2 presents the values of 𝐾, 𝐻 , and 𝐴, along with the medians 
of the asymptotic regret for both policies for sample sizes 𝑛 ∈ {500, 1000, 2000, 3000}. Compared to Model 1, Model 2 entails larger 
𝐾 and 𝐴, and smaller 𝐻 , which lead to higher median regrets under both policies. Consider the case with 𝑛 = 500. In model 1, the 
median of the asymptotic regret is higher with the EWM policy, whereas in model 2, it is higher with the SWM policy: this confirms 
that the ranking of the asymptotic median regrets depends on the unknown data distribution 𝑃 . Because of the fastest rate, though, 
as 𝑛 increases the SWM policy exhibits relatively better performance. Regardless of the specific distribution 𝑃 , there exists a certain 
sample size beyond which the asymptotic median regret with the SWM policy becomes smaller. In model 2, when 𝑛 = 1000, the 
inversion of ranking already occurs.
9 
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Table 2
Values of 𝐾, 𝐻 , and 𝐴, and asymptotic median regrets using both EWM and SWM policies across different models, are presented. 
The median regret for the SWM policy is computed using the optimal bandwidth 𝜎∗𝑛 . To facilitate the reading, asymptotic median 
regrets have been scaled by a factor of 10,000.
 Model n EWM SWM K H A  
 
1

500 45.347 18.459 1.596 0.399 0.199 
 1000 28.567 10.602 1.596 0.399 0.199 
 2000 17.996 6.089 1.596 0.399 0.199 
 3000 13.733 4.402 1.596 0.399 0.199 
 
2

500 188.651 204.255 9.575 0.199 0.399 
 1000 118.843 117.314 9.575 0.199 0.399 
 2000 74.866 67.379 9.575 0.199 0.399 
 3000 57.134 48.714 9.575 0.199 0.399 

Table 3
Finite sample and asymptotic median regret with the EWM and SWM policies across different models. Finite sample (empirical) values are computed through 
5000 Monte Carlo simulations. The last column reports the ratio between finite sample median regrets with the EWM and SWM policies.
 Model n EWM SWM Ratio  
 Empirical Asymptotic Empirical 𝜎∗𝑛 Empirical 𝜎̂∗𝑛 Asymptotic  
 
1

500 39.809 45.347 15.113 24.169 18.459 1.647 
 1000 27.547 28.567 8.692 14.145 10.602 1.948 
 2000 18.816 17.996 5.073 8.507 6.089 2.212 
 3000 14.043 13.733 3.471 5.491 4.402 2.558 
 
2

500 147.029 188.651 116.784 159.876 204.255 0.920 
 1000 110.372 118.843 82.473 118.695 117.314 0.930 
 2000 87.325 74.866 55.731 79.436 67.379 1.099 
 3000 72.122 57.134 46.007 68.656 48.714 1.050 

To investigate the finite sample distributions of the regret, I draw samples of size 𝑛 from 𝑃  5000 times for each model. Each 
sample is used to estimate the thresholds ̂𝑡𝑒𝑛 and ̂𝑡𝑠𝑛. Estimating ̂𝑡𝑠𝑛 requires specifying a bandwidth 𝜎𝑛, for which I adopt the following 
method: I use the estimated policy 𝑡𝑒𝑛 to compute 𝐴̂𝑛 and 𝐾̂𝑛, which are then used to compute the optimal 𝜆̂∗𝑛, and the optimal 
bandwidth 𝜎̂∗𝑛 . In Appendix  A, I provide and discuss formulas for estimators 𝐴̂𝑛 and 𝐾̂𝑛. The SWM policy 𝑡𝑠𝑛 is hence estimated 
with this bandwidth 𝜎̂∗𝑛 , which consistently estimates the optimal bandwidth 𝜎∗𝑛  if 𝐴̂𝑛 and 𝐾̂𝑛 consistently estimate 𝐴 and 𝐾. I also 
consider 𝑡𝑠𝑛 with the infeasible optimal 𝜎∗𝑛  computed from the data generating process.

Estimates for 𝑡𝑒𝑛 and 𝑡𝑠𝑛 are used to compute regrets (𝑡𝑒𝑛) and (𝑡𝑠𝑛). I thus obtain the finite sample distributions of the regret, 
which can be compared with the asymptotic distributions derived in Corollaries  2.1 and 4.1. Table  3 presents the median of these 
finite sample and asymptotic distributions, also depicted in Figs.  1 and 2. Corresponding tables and figures for the mean regret are 
provided in Appendix  B.

The last column of each table reports the ratio between the finite sample median regrets for the EWM and SWM policy, facilitating 
the comparison: a ratio larger than one indicates that the SWM policy outperforms the EWM policy. These ratios increase with the 
sample size, reflecting the faster asymptotic convergence rate of the SWM policy. Similar to the asymptotic results, in finite sample 
the SWM policy does relatively better as the sample size increases.

Simulations enable comparison between finite sample regrets and their asymptotic counterparts. Across all models and sample 
sizes, the asymptotic approximation for the feasible SWM policy (with the estimated bandwidth 𝜎̂∗𝑛 ) is relatively less accurate. 
Simulations suggest that this is partly attributable to the need for estimating an additional tuning parameter, the bandwidth 𝜎𝑛. 
When the SWM policy is estimated using the infeasible optimal bandwidth 𝜎∗𝑛 , in fact, the asymptotic approximation is more accurate 
and the regret is smaller.

In Model 1, as illustrated in Fig.  1, both the finite sample and the asymptotic median regrets are lower for the SWM policy. 
Conversely, in Model 2 (illustrated in Fig.  2), the finite sample median regret is lower with the EWM policy. This confirms the 
impossibility of ranking the policies in a pointwise sense: different distributions 𝑃  result in different rankings for the finite sample 
median regrets.

It is important to note that the ranking of the EWM and the SWM policies indicated by the asymptotic results may differ from the 
actual finite sample comparison. Consider, for example, Model 2 with 𝑛 = 1000: despite the asymptotic analysis suggesting a smaller 
median regret with the SWM policy, the EWM guarantees a smaller regret. In this scenario, even if 𝑃  were known in advance, 
choosing according to the asymptotic approximation would not have been optimal. As 𝑛 increases, the approximation improves, 
and the rankings based on asymptotic analysis and finite sample comparisons coincide.

Monte Carlo simulations have confirmed that the asymptotic results can approximate some finite sample behavior of the regrets, 
highlighting some caveats to consider when applying conclusions from asymptotic analysis to finite sample regrets with the EWM 
and SWM policies. However, they have not yet provided insight into the practical significance of the differences between the two 
policies, whether these differences are relevant or negligible in real-world scenarios. An empirical illustration is useful to answer 
these questions, illustrating the different implications that the policies may have.
10 
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Fig. 1. The figure illustrates asymptotic and finite sample median regrets for the EWM and SWM policies in Model 1, corresponding to the values reported in 
Table  3.

Fig. 2. The figure illustrates asymptotic and finite sample median regrets for the EWM and SWM policies in Model 2, corresponding to the values reported in 
Table  3.

5. Empirical illustration

I consider the same empirical setting as Kitagawa and Tetenov (2018): experimental data from the National Job Training 
Partnership Act (JTPA) Study. Bloom et al. (1997) describes the experiment in detail. The study randomized whether applicants 
would be eligible to receive a mix of training, job-search assistance, and other services provided by the JTPA for a period of 18 
months. Background information on the applicants was collected before treatment assignment, alongside administrative and survey 
data on the applicants’ earnings over the subsequent 30 months.

I consider the same sample of 9223 observations as in Kitagawa and Tetenov (2018). The treatment variable 𝐷 is a binary 
indicator denoting whether the individual was assigned to the program (intention-to-treat). The outcome variable 𝑌  represents 
the total individual earnings during the 30 months following program assignment, adjusted by subtracting the average cost of the 
11 
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Table 4
Summary of the Empirical Welfare Maximizer (EWM) and Smoothed Welfare Maximizer (SWM) policies. 
 EWM SWM  
 Threshold 3107 3592  
 Confidence interval (2090.51, 4123.49) (1350.34, 5983.66) 
 Bootstrapped confidence interval (1999, 4050.97)  
 Asymptotic mean regret 35.27 93.48  
 Asymptotic median regret 16.63 50.74  
 % of workers treated 63.55 66.19  

program (774 dollars) for individuals with 𝐷 = 1. This adjustment accounts for resource limitations by defining the treatment effect 
as positive when the benefits exceed the costs, rather than simply when the benefits are positive.4

The threshold policy is implemented by considering the individual’s earnings in the year preceding the assignment as the index 
𝑋. Treatment is exclusively assigned to workers with prior earnings below the threshold, based on the expectation that program 
services yield a more substantial positive effect for individuals who previously experienced lower earnings. Experimental data are 
employed to determine the threshold beyond which the treatment, on average, harms the recipients.

To estimate the SWM policy, I use the cumulative distribution function of the standard normal distribution as the kernel function, 
maintaining the same assumptions as in the Monte Carlo simulations. The bandwidth is chosen using the EWM policy ̂𝑡𝑒𝑛 to compute 
𝐴̂𝑛 and 𝐾̂𝑛 (see Appendix  A for the formulas), the optimal 𝜆̂∗𝑛, and then the optimal bandwidth 𝜎̂∗𝑛 . Table  4 reports the threshold 
estimates, including the confidence intervals constructed as discussed in Appendix  A. The threshold with the EWM policy is almost 
500 dollars lower than with the SWM (3107 vs. 3592 dollars), a drop of 13.5%. The lower threshold implies that the treatment 
would target fewer workers: if the EWM policy were implemented, 63.55% of the workers in the sample would receive the program 
services, compared to the 66.19% with the SWM policy, resulting in a 3 percentage point difference.

Since I account for the costs of the program, the finding that the optimal threshold policy excludes certain workers from treatment 
does not imply that the program has a negative impact on those excluded. Rather, it likely reflects that, for workers with higher 
initial earnings, the program’s benefits are outweighed by its costs. However, if policymakers have different welfare objectives, they 
may still conclude that treating all individuals is optimal.

For these reasons, the numbers in the table should be considered with care, and clearly, the intention of this empirical illustration 
was not to advocate for a specific new job-training policy. Rather, the application aimed to assess if the EWM and SWM policies 
may have implications with relevant economic differences. Results suggest this is the case: together with theoretical and simulation 
findings, this implies that the choice between the EWM and the SWM policy should be thoughtfully considered, as it may determine 
relevant improvement in population welfare.

6. Conclusion

In this paper, I addressed the problem of using experimental data to estimate optimal threshold policies when the policymaker 
seeks to minimize the regret associated with implementing the policy in the population. I first examined the Empirical Welfare 
Maximizer threshold policy, deriving its asymptotic distribution, and showing how it links to the asymptotic distribution of its 
regret. I then introduced the Smoothed Welfare Maximizer policy, replacing the indicator function in the EWM policy with a smooth 
kernel function. Under the assumptions commonly made in the policy learning literature, the convergence rate for the worst-case 
regret of the SWM is faster than with the EWM policy. Monte Carlo simulations corroborated the asymptotic finding that the SWM 
policy may perform better than the commonly studied EWM policy also in finite sample. An empirical illustration displayed that 
the implications of the two policies can remarkably differ in real-world application.

Three sets of problems remain open for future research, to extend the findings of this paper in diverse directions. First, while 
my results on the rate improvement for the EWM and SWM policies are pointwise, one might ask whether they could be formalized 
as optimality statements. Specifically, is it possible to establish minimax rate optimality for the two policies over some family of 
distributions ? For the EWM, this would relate closely to Theorems 2.3 and 2.4 in Kitagawa and Tetenov (2018), as the assumptions 
underlying my 𝑛 2

3  rate improvement are connected to their margin assumption. For the SWM, however, the connection with the 
margin assumption is less clear, and alternative approaches may be considered.

Second, it would be interesting to extend the smoothing approach of the EWM policy to other policy classes. While threshold 
policies are convenient as they depend on a single parameter, the same intuition for smoothing the indicator function could also apply 
to linear index or multiple index policies, albeit with more complex derivations. Key questions include how the theory developed 
in this paper could be adapted to these policy classes and whether this approach might be generalized to all cases where the EWM 
policy is applicable. In some of these cases, the EWM policy is known to lack good computational properties. Since the SWM policy 
implies a smooth objective function, investigating its potential computational advantages would also be worthwhile.

Lastly, the framework developed in this paper for using experimental data to estimate optimal policies could inform experimental 
design. While the existing literature mainly focuses on optimal design for estimating the average treatment effect, it could be valuable 

4 My framework may not accommodate other types of budget constraints; for example, it cannot handle scenarios where only a fixed amount of resources 
is available for program implementation.
12 



F. Crippa Journal of Econometrics 249 (2025) 105998 
to consider scenarios where estimating the threshold policy is the goal: how should the experimental design be adapted? How the 
allocation of units to treatment and control groups would change? The results presented in this paper, elucidating the connection 
between the distribution 𝑃  and the regret of the policy, provide a natural foundation for exploring experimental designs optimal 
for threshold policy estimation.
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Appendix A. Confidence intervals for threshold policies

Results derived in Section 3 can be used to construct confidence intervals that asymptotically cover the optimal threshold policy 
with a given probability, and to conduct hypotheses tests. It is important to remark that, in a decision problem setting, hypotheses 
testing does not have a clearly motivated justification, and indeed, statistical decision theory is the alternative approach to deal 
with decisions under uncertainty, as pointed out in Manski (2021). Rather than advocating for confidence intervals and hypothesis 
tests for threshold policies, this appendix aims to provide a procedure agnostic on why one may be interested in it.

For the EWM policy, Rai (2018) proposes some confidence intervals uniformly valid for several policy classes. They rely on test 
inversion of a certain bootstrap procedure, which compares the welfare generated by all the policies in the class. My procedure is 
much simpler for the EWM threshold policies, and I directly construct confidence intervals from the asymptotic distributions derived 
in Theorem  2. An analogous approach, built over results in Theorem  4, is then used to construct confidence intervals for the SWM 
policy.

A.1. Empirical Welfare Maximizer policy

Consider the asymptotic distribution for the EWM threshold policy derived in Theorem  2:

𝑛1∕3
(

𝑡𝑒𝑛 − 𝑡
∗) →𝑑 (2

√

𝐾∕𝐻)
2
3 argmax

𝑟

(

𝐵(𝑟) − 𝑟2
)

.

If 𝐻 and 𝐾 were known, confidence intervals for the optimal policy 𝑡∗ with asymptotic coverage 1 − 𝛼 could be constructed as 
(𝑡𝑒𝑛 −𝑤

𝑒
𝑛, 𝑡

𝑒
𝑛 +𝑤

𝑒
𝑛), where

𝑤𝑒𝑛 = 𝑛−
1
3 (2

√

𝐾∕𝐻)
2
3 𝑐𝛼∕2

and 𝑐𝛼∕2 is the critical value, the upper 𝛼∕2 quantile of the distribution of max𝑟 𝐵(𝑟) − 𝑟2.
In practice, 𝐻 and 𝐾 are unknown and should be estimated. They are defined as:

𝐾 =𝑓𝑥(𝑡∗)
(

1
𝑝(𝑡∗)

E[𝑌 2
1 |𝑋 = 𝑡∗] + 1

1 − 𝑝(𝑡∗)
E[𝑌 2

0 |𝑋 = 𝑡∗]
)

𝐻 =𝑓𝑥(𝑡∗)

(

𝜕E
[

𝑌1 − 𝑌0|𝑋 = 𝑡∗
]

𝜕𝑋

)

.

and can be estimated by a plug-in method: consider kernel density estimator 𝑓𝑥(𝑥) for 𝑓𝑥(𝑥), and local linear estimators 𝜅̂𝑗 (𝑥) and 
𝜈̂′𝑗 (𝑥) for 𝜅𝑗 (𝑥) = E

[

𝑌 2
𝑗 |𝑋 = 𝑥,𝐷 = 𝑗

]

 and 𝜈′𝑗 (𝑥) = 𝜕𝜈𝑗 (𝑥)
𝜕𝑥 = 𝜕E

[

𝑌𝑗 |𝑋=𝑥,𝐷=𝑗
]

𝜕𝑥 . Recall that 𝑝(𝑥) = E[𝐷|𝑋 = 𝑥]: given a value 𝑥, the 
expectation is known. Define estimators 𝐾̂𝑛 and 𝐻̂𝑛 by: 

𝐾̂𝑛 = 𝑓𝑥(𝑡𝑒𝑛)

(

1
𝑝(𝑡𝑒𝑛)

𝜅̂1(𝑡𝑒𝑛) +
1

1 − 𝑝(𝑡𝑒𝑛)
𝜅̂0(𝑡𝑒𝑛)

)

(5)

and 

𝐻̂𝑛 = 𝑓𝑥(𝑡𝑒𝑛)(𝜈̂
′
1(𝑡

𝑒
𝑛) − 𝜈̂

′
0(𝑡

𝑒
𝑛)). (6)

Under the additional assumption that the second derivatives of 𝑓𝑥, 𝜈1 and 𝜈0 are continuous and bounded in a neighborhood of 𝑡∗, 
and with the proper choice of bandwidth sequences, 𝐾̂𝑛 and 𝐻̂𝑛 are consistent estimators for 𝐾 and 𝐻 .

Feasible confidence intervals with asymptotic coverage 1 − 𝛼 can hence be constructed as (𝑡𝑒𝑛 − 𝑤̂𝑒𝑛, 𝑡𝑒𝑛 + 𝑤̂𝑒𝑛), where

𝑤̂𝑒𝑛 = 𝑛−
1
3 (2

√

𝐾̂𝑛∕𝐻̂𝑛)
2
3 𝑐𝛼∕2.
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A.1.1. Bootstrap
To avoid relying on tabulated values for 𝑐𝛼∕2 and on estimation of 𝐾, an alternative approach to inference for the EWM policy 

is the bootstrap. Nonparametric bootstrap is not valid for 𝑡𝑒𝑛 and, more generally, for ‘‘cube root asymptotics’’ estimators (Abrevaya 
and Huang, 2005; Léger and MacGibbon, 2006). Nonetheless, Cattaneo et al. (2020) provide a consistent bootstrap procedure 
for estimators of this type. Consistency is achieved by altering the shape of the criterion function defining the estimator whose 
distribution must be approximated. The standard nonparametric bootstrap is inconsistent for 𝑄0(𝑟) = − 1

2𝐻𝑟 as defined in the proof 
of Theorem  2, and hence the procedure in Cattaneo et al. (2020) directly estimates this non-random part.

Let {𝑍𝑏
𝑖 } be a random sample from the empirical distribution 𝑃𝑛, and define the estimator 𝑡𝑏𝑛 as:

𝑡𝑏𝑛 = argmax𝑡

1
𝑛

𝑛
∑

𝑖=1

[(

𝐷𝑏
𝑖 𝑌

𝑏
𝑖

𝑝(𝑋𝑏
𝑖 )

−
(1 −𝐷𝑏

𝑖 )𝑌
𝑏
𝑖

(1 − 𝑝(𝑋𝑏
𝑖 ))

)

𝟏{𝑋𝑏
𝑖 > 𝑡}

]

− (7)

1
𝑛

𝑛
∑

𝑖=1

[(

𝐷𝑖𝑌𝑖
𝑝(𝑋𝑖)

−
(1 −𝐷𝑖)𝑌𝑖
(1 − 𝑝(𝑋𝑖))

)

𝟏{𝑋𝑖 > 𝑡}
]

− 1
2
(𝑡 − 𝑡𝑛)2𝐻̂𝑛.

The bootstrap procedure proposed by Cattaneo et al. (2020) is the following:

1. Compute 𝑡𝑒𝑛 as described in Eq.  (3).
2. Using 𝑡𝑒𝑛, compute 𝐻̂𝑛 as described in Eq.  (6).
3. Using 𝑡𝑒𝑛, 𝐻̂𝑛, and the bootstrap sample {𝑍𝑏

𝑖 }, compute 𝑡𝑏𝑛 as described in Eq.  (7).
4. Iterate step 3 to obtain the distribution of 𝑛 1

3
(

𝑡𝑏𝑛 − 𝑡
𝑒
𝑛
)

, and use it as an estimate for the distribution of 𝑛 1
3
(

𝑡𝑒𝑛 − 𝑡
∗).

To be valid, the procedure needs an additional assumption. 

Assumption 6 (Bounded 4th Moment).  Potential outcomes distribution are such that 1

𝑛
2
3
E[𝑌 4

1 |𝑋 = 𝑡∗] = 𝑜(1) and 1

𝑛
2
3
E[𝑌 4

0 |𝑋 = 𝑡∗] =

𝑜(1).

Assumption  6 guarantees that the envelope 𝐺𝑅 is such that 𝑃𝐺4
𝑅 = 𝑜(𝑅−1). Theorem  5 proves that the distribution of 𝑛 1

3
(

𝑡𝑏𝑛 − 𝑡
𝑒
𝑛
)

consistently estimates the distribution of 𝑛 1
3
(

𝑡𝑒𝑛 − 𝑡
∗), and validate the bootstrap procedure.

Theorem 5.  Consider estimators ̂𝑡𝑒𝑛 defined in Eq.  (3) and ̂𝑡𝑏𝑛 defined in Eq.  (7) and the estimand 𝑡∗ defined in Eq.  (1). Under Assumptions 
1, 2 (with 𝑠 = 2), 3, and 6, as 𝐻̂𝑛 →

𝑝 𝐻 and 𝑛→ ∞,

𝑛1∕3
(

𝑡𝑏𝑛 − 𝑡𝑛
)

→𝑑 (2
√

𝐾∕𝐻)
2
3 argmax

𝑟

(

𝐵(𝑟) − 𝑟2
)

where the limiting distribution is the same as in Theorem  2.
Distribution of 𝑛 1

3
(

𝑡𝑏𝑛 − 𝑡
𝑒
𝑛
) can hence be used to construct asymptotic valid confidence intervals and run hypothesis tests for 𝑡𝑒𝑛.

A.2. Smoothed Welfare Maximizer policy

Consider the asymptotic distribution for the SWM threshold policy derived in Theorem  4, for 𝑛𝜎2ℎ+1𝑛 → 𝜆 < ∞:

(𝑛𝜎𝑛)
1
2 (𝑡𝑠𝑛 − 𝑡

∗) →𝑑  (𝜆
1
2𝐻−1𝐴,𝐻−2𝛼2𝐾).

𝜆, 𝜎𝑛, and 𝛼2 are known. If also 𝐾, 𝐻 , and 𝐴 were known, confidence intervals for the optimal policy 𝑡∗ with asymptotic coverage 
1 − 𝛼 could be constructed as (𝑡𝑠𝑛 − 𝑏𝑛 −𝑤𝑠𝑛, 𝑡𝑠𝑛 − 𝑏𝑛 +𝑤𝑠𝑛), where

𝑏𝑛 = (𝑛𝜎𝑛)
− 1

2 𝜆
1
2
𝐴
𝐻

𝑤𝑠𝑛 = (𝑛𝜎𝑛)
− 1

2 (
√

𝛼2𝐾∕𝐻)𝑐𝛼∕2

and 𝑐𝛼∕2 the upper 𝛼∕2 quantile of the standard normal distribution.
In practice, 𝐾, 𝐻 , and 𝐴 are unknown and should be estimated. As usual with inference involving bandwidths and kernels, two 

approaches are available: estimate and remove the asymptotic bias, or undersmooth.
For the first approach, consider estimators in Eq.  (5) for 𝐾̂𝑛 and in Eq.  (6) for 𝐻̂𝑛, substituting 𝑡𝑒𝑛 with 𝑡𝑠𝑛. For 𝐴, recall that

𝐴 = − 1
ℎ!
𝛼1 ∫𝑦

(

𝑌1 − 𝑌0
)

𝜑ℎ𝑥(𝑦, 𝑡
∗)𝑑𝑦

= − 1
ℎ!
𝛼1

[

2𝑓 ′
𝑥(𝑡

∗)[𝜆′1(𝑡
∗) − 𝜆′0(𝑡

∗)] + 𝑓𝑥(𝑡∗)[𝜆′′1 (𝑡
∗) − 𝜆′′0 (𝑡

∗)]
]

where 𝑓𝑥(𝑥) is the probability density function of 𝑋 and 𝜈𝑗 (𝑥) = E[𝑌𝑗 |𝑋 = 𝑥,𝐷 = 𝑗]. Consider kernel density estimator 𝑓𝑥(𝑥) and 
𝑓 ′
𝑥(𝑥) for 𝑓𝑥(𝑥) and 𝑓 ′

𝑥(𝑥), and local linear estimators 𝜈̂′𝑗 (𝑥) and 𝜈̂′′𝑗 (𝑥) for 𝜈′𝑗 (𝑥) =
𝜕𝜈𝑗 (𝑥)
𝜕𝑥  and 𝜈′′𝑗 (𝑥) =

𝜕2𝜈𝑗 (𝑥)
𝜕2𝑥

. Define estimator 𝐴̂𝑛 by:

𝐴̂ = − 1 𝛼
[

2𝑓 ′ (𝑡𝑠 )[𝜆̂′ (𝑡𝑠 ) − 𝜆̂′ (𝑡𝑠 )] + 𝑓 (𝑡𝑠 )[𝜆̂′′(𝑡𝑠 ) − 𝜆̂′′(𝑡𝑠 )]
]

𝑛 ℎ! 1 𝑥 𝑛 1 𝑛 0 𝑛 𝑥 𝑛 1 𝑛 0 𝑛
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Table 5
Finite sample and asymptotic expected regrets with the EWM and SWM policies across different models are presented. Finite sample (empirical) values are 
computed through 5000 Monte Carlo simulations. The last column displays the ratio between finite sample expected regrets with the EWM and SWM policies.
 Model n EWM SWM Ratio  
 Empirical Asymptotic Empirical 𝜎∗𝑛 Empirical 𝜎̂∗𝑛 Asymptotic  
 
1

500 89.635 96.190 31.492 77.747 39.714 1.153 
 1000 58.799 60.596 18.248 44.240 22.809 1.329 
 2000 37.297 38.173 10.887 29.176 13.101 1.278 
 3000 28.615 29.131 7.872 16.189 9.471 1.768 
 
2

500 276.867 400.166 215.876 291.654 439.442 0.949 
 1000 201.182 252.089 151.181 209.069 252.393 0.962 
 2000 149.572 158.806 107.733 151.069 144.962 0.990 
 3000 124.168 121.192 90.251 125.565 104.805 0.989 

Fig. 3. The figure illustrates asymptotic and finite sample expected regrets for the EWM and SWM policies in Model 1, corresponding to the values reported in 
Table  5.

which consistently estimate 𝐴 under the additional assumption that the third derivatives of 𝑓𝑥, 𝜈1 and 𝜈0 are continuous and bounded 
in a neighborhood of 𝑡∗, and with the proper choice of bandwidth sequences.

Confidence intervals with asymptotic coverage 1 − 𝛼 can hence be constructed as (𝑡𝑠𝑛 − 𝑏̂𝑛 − 𝑤̂𝑠𝑛, 𝑡𝑠𝑛 − 𝑏̂𝑛 + 𝑤̂𝑠𝑛), where

𝑏̂𝑛 = (𝑛𝜎𝑛)
− 1

2 𝜆
1
2
𝐴̂𝑛
𝐻̂𝑛

𝑤̂𝑠𝑛 = (𝑛𝜎𝑛)
− 1

2 (
√

𝛼2𝐾̂𝑛∕𝐻̂𝑛)𝑐𝛼∕2

The second approach relies on undersmoothing, and chooses a suboptimally small 𝜎𝑛 to eliminate the asymptotic bias, with 
no need to estimate 𝐴. Instead of a bandwidth sequence 𝜎𝑛 = 𝑂𝑝(𝑛

− 1
2ℎ+1 ), it considers a sequence 𝜎𝑛 = 𝑜𝑝(𝑛

− 1
2ℎ+1 ) such that 

𝑛𝜎2ℎ+1𝑛 → 𝜆 = 0, and ensures 𝑏𝑛 → 0. Confidence intervals with asymptotic coverage 1−𝛼 can hence be constructed as (𝑡𝑠𝑛−𝑤̂𝑠𝑛, 𝑡𝑠𝑛+𝑤̂𝑠𝑛), 
with 𝑤̂𝑠𝑛 defined as above.

Appendix B. Monte Carlo simulations

Table  5 and Figs.  3 and 4 are the analogous of Table  3 and Figs.  1 and 2 for the expected regret. Comments made for the median 
also extend to the expected regret, with the caveat that my results do not imply that the expected value of the finite sample regret 
converges to the expected value of the asymptotic distribution.
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Fig. 4. The figure illustrates asymptotic and finite sample expected regrets for the EWM and SWM policies in Model 2, corresponding to the values reported in 
Table  5.

Appendix C. Proofs

Theorem  1.  Consider the EWM policy 𝑡𝑒𝑛 defined in Eq.  (3) and the optimal policy 𝑡∗ defined in Eq.  (1). Under Assumptions  1 and 2 (with 
𝑠 = 0),

𝑡𝑒𝑛 →
𝑎.𝑠. 𝑡∗

i.e. 𝑡𝑒𝑛 is a strongly consistent estimator for 𝑡∗.

Proof.  Estimator 𝑡𝑒𝑛 in (3) can be written as

𝑡𝑒𝑛 = argmax𝑡

1
𝑛

𝑛
∑

𝑖=1

[(

𝐷𝑖𝑌𝑖
𝑝(𝑋𝑖)

−
(1 −𝐷𝑖)𝑌𝑖
(1 − 𝑝(𝑋𝑖))

)

(𝟏{𝑋𝑖 > 𝑡} − 𝟏{𝑋𝑖 > 𝑡
∗})

]

= argmax
𝑡

1
𝑛

𝑛
∑

𝑖=1
𝑚
(

𝑍𝑖, 𝑡
)

where

𝑚 (𝑍, 𝑡) =
(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

(

𝟏{𝑋 > 𝑡} − 𝟏{𝑋 > 𝑡∗}
)

and {𝑍𝑖} is a sample of 𝑛 observation from distribution 𝑃 .
Define 𝑃𝑛𝑚 (⋅, 𝑡) =

∑𝑛
𝑖=1 𝑚

(

𝑍𝑖, 𝑡
) and 𝑃𝑚 (𝑍, 𝑡) = E𝑃 [𝑚 (𝑍, 𝑡)]. With this notation, Eqs. (1) and (3) can be written as

𝑡∗ = argmax
𝑡

𝑃𝑚 (𝑍, 𝑡)

𝑡𝑒𝑛 = argmax𝑡
𝑃𝑛𝑚 (⋅, 𝑡) .

Threshold policies I am considering can be seen as a tree partition of depth 1. Tree partitions of finite depth are a VC 
class (Leboeuf et al., 2020), and hence 𝑚 (⋅, 𝑡) is a manageable class of functions. Consider the envelope function 𝐹 = 2 ||

|

𝐷𝑌
𝑝(𝑋) −

(1−𝐷)𝑌
(1−𝑝(𝑋))

|

|

|

. 
Note that E

[

|

|

|

𝐷𝑌
𝑝(𝑋) −

(1−𝐷)𝑌
(1−𝑝(𝑋))

|

|

|

2
]

= 1
𝑝(𝑋)E[𝑌

2
1 ] +

1
1−𝑝(𝑋)E[𝑌

2
0 ]: Assumption 2.2 guarantees the existence of E

[

|

|

|

𝐷𝑌
𝑝(𝑋) −

(1−𝐷)𝑌
(1−𝑝(𝑋))

|

|

|

2
]

.

It follows from corollary 3.2 in Kim and Pollard (1990) that
sup
𝑡
|

|

𝑃𝑛𝑚(⋅, 𝑡) − 𝑃𝑚(𝑍, 𝑡)|| →
𝑎.𝑠. 0.

Under Assumptions 2.1 and 2.3, 𝑃𝑚(𝑍, 𝑡) is continuous in 𝑡, and 𝑡∗ is the unique maximizer. Hence,
sup
𝑡
|

|

𝑃𝑛𝑚(⋅, 𝑡) − 𝑃𝑚(𝑍, 𝑡)|| + 𝑃𝑚(𝑍, 𝑡
∗) ≥

|𝑃 𝑚(⋅, 𝑡𝑒 ) − 𝑃𝑚(𝑍, 𝑡𝑒 )| + 𝑃𝑚(𝑍, 𝑡∗) ≥

| 𝑛 𝑛 𝑛 |
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|

|

𝑃𝑛𝑚(⋅, 𝑡𝑒𝑛) − 𝑃𝑚(𝑍, 𝑡
𝑒
𝑛)|| + 𝑃𝑚(𝑍, 𝑡

𝑒
𝑛) ≥

𝑃𝑛𝑚(⋅, 𝑡𝑒𝑛) ≥ 𝑃𝑛𝑚(⋅, 𝑡∗) → 𝑃𝑚(𝑍, 𝑡∗)

where the second inequality is due to the fact that 𝑡∗ is the maximizer of 𝑃𝑚(𝑍, 𝑡), the third comes from the triangular inequality, 
the fourth from 𝑡𝑒𝑛 being the maximizer of 𝑃𝑛𝑚(⋅, 𝑡), and the last limit comes from LLN. This prove that 𝑃𝑛𝑚(⋅, 𝑡𝑒𝑛) →𝑎.𝑠. 𝑃𝑚(𝑍, 𝑡∗), and 
hence 𝑃𝑚(𝑍, 𝑡𝑒𝑛) →𝑎.𝑠. 𝑃𝑚(𝑍, 𝑡∗). Since 𝑡∗ is the unique maximizer of 𝑃𝑚(𝑍, 𝑡) and 𝑃𝑚(𝑍, 𝑡) is continuous, 𝑡𝑒𝑛 →𝑎.𝑠. 𝑡∗. It means that 𝑡𝑒𝑛
is a strongly consistent estimator for 𝑡∗. □

Theorem  2.  Consider the EWM policy 𝑡𝑒𝑛 defined in Eq.  (3) and the optimal policy 𝑡∗ defined in Eq.  (1). Under Assumptions  1, 2 (with 
𝑠 = 2), and 3, as 𝑛→ ∞,

𝑛1∕3
(

𝑡𝑒𝑛 − 𝑡
∗) →𝑑 (2

√

𝐾∕𝐻)
2
3 argmax

𝑟

(

𝐵(𝑟) − 𝑟2
)

where 𝐵(𝑟) is the two-sided Brownian motion process, and 𝐾 and 𝐻 are

𝐾 =𝑓𝑥(𝑡∗)
(

1
𝑝(𝑡∗)

E[𝑌 2
1 |𝑋 = 𝑡∗] + 1

1 − 𝑝(𝑡∗)
E[𝑌 2

0 |𝑋 = 𝑡∗]
)

𝐻 =𝑓𝑥(𝑡∗)

(

𝜕E𝑃
[

𝑌1 − 𝑌0|𝑋 = 𝑡∗
]

𝜕𝑋

)

.

Proof.  The proof shows that conditions for the main theorem in Kim and Pollard (1990) hold; hence, their result is valid for 𝑡𝑒𝑛. 
For completeness, I report the theorem.

Theorem 1.1 in Kim and Pollard (1990).  Consider estimators defined by maximization of processes

𝑃𝑛𝑔(⋅, 𝜃) =
1
𝑛

𝑛
∑

𝑖=1
𝑔
(

𝜉𝑖, 𝜃
)

where {𝜉𝑖
}

𝑖 is a sequence of i.i.d. observations from a distribution 𝑃  and {𝑔(⋅, 𝜃) ∶ 𝜃 ∈ 𝛩} is a class of functions indexed by a subset 𝛩 in 
R𝑘. The envelope 𝐺𝑅(⋅) is defined as the supremum of 𝑔(⋅, 𝜃) over the class

𝑅 =
{

|𝑔(⋅, 𝜃)| ∶ |

|

𝜃 − 𝜃0|| ≤ 𝑅
}

, 𝑅 > 0.

Let {𝜃𝑛
} be a sequence of estimators for which

1. 𝑃𝑛𝑔
(

⋅, 𝜃𝑛
)

≥ sup𝜃∈𝛩 𝑃𝑛𝑔(⋅, 𝜃) − 𝑜𝑃
(

𝑛−2∕3
)

.
2. 𝜃𝑛 converges in probability to the unique 𝜃0 that maximizes 𝑃𝑔(⋅, 𝜃).
3. 𝜃0 is an interior point of 𝛩.

Let the functions be standardized so that 𝑔 (⋅, 𝜃0
)

≡ 0. If the classes 𝑅 for 𝑅 near 0 are uniformly manageable for the envelopes 𝐺𝑅 and 
satisfy:

4. 𝑃𝑔(⋅, 𝜃) is twice differentiable with second derivative matrix −𝐻 at 𝜃0.
5. 𝐾(𝑠, 𝑟) = lim𝛼→∞ 𝛼𝑃𝑔

(

⋅, 𝜃0 + 𝑟∕𝛼
)

𝑔
(

⋅, 𝜃0 + 𝑠∕𝛼
) exists for each 𝑠, 𝑟 in R𝑘 and lim𝛼→∞ 𝛼𝑃𝑔

(

⋅, 𝜃0 + 𝑟∕𝛼
)2

{

|

|

|

𝑔
(

⋅, 𝜃0 + 𝑟∕𝛼
)

|

|

|

> 𝜀𝛼
}

=
0 for each 𝜀 > 0 and 𝑟 in R𝑘.

6. 𝑃𝐺2
𝑅 = 𝑂(𝑅) as 𝑅 → 0 and for each 𝜀 > 0 there is a constant C such that 𝑃𝐺2

𝑅𝟏{𝐺𝑅 > 𝐶} ≤ 𝜀𝑅 for 𝑅 near 0.
7. 𝑃 |

|

|

𝑔
(

⋅, 𝜃1
)

− 𝑔
(

⋅, 𝜃2
)

|

|

|

= 𝑂
(

|

|

𝜃1 − 𝜃2||
) near 𝜃0.

Then, the process 𝑛2∕3𝑃𝑛𝑔
(

⋅, 𝜃0 + 𝑟𝑛−1∕3
) converges in distribution to a Gaussian process 𝑄(𝑟) with continuous sample paths, expected value 

− 1
2 𝑟

′𝐻𝑟 and covariance kernel 𝐾. If 𝐻 is positive definite and if 𝑄 has nondegenerate increments, then 𝑛1∕3 (𝜃𝑛 − 𝜃0
) converges in distribution 

to the (almost surely unique) random vector that maximizes 𝑄.
I apply Theorem 1.1 in Kim and Pollard (1990) by taking 𝜉𝑖 = 𝑍𝑖, 𝜃 = 𝑡, 𝜃𝑛 = 𝑡𝑒𝑛, 𝜃0 = 𝑡∗, 𝑔(⋅, 𝜃) = 𝑚(⋅, 𝑡), where 𝑚(⋅, 𝑡) is standardized:

𝑚
(

𝑍𝑖, 𝑡
)

=
(

𝐷𝑖𝑌𝑖
𝑝(𝑋𝑖)

−
(1 −𝐷𝑖)𝑌𝑖
(1 − 𝑝(𝑋𝑖))

)

(

𝟏{𝑋𝑖 > 𝑡} − 𝟏{𝑋𝑖 > 𝑡
∗}
)

.

First, I will verify that conditions 1–7 apply to my setting:
1. 𝑃𝑛𝑚(⋅, 𝑡) takes only finite (𝑛 + 1) values; hence, condition 1 is satisfied with the equality.
2. In Theorem  1, I proved that 𝑡𝑒𝑛 is a strongly consistent estimator for 𝑡∗.
3. 𝑡∗ is an interior point of   by Assumption 2.1.
I need to prove that the classes 𝑅 for 𝑅 near 0 are uniformly manageable for the envelopes 𝐺𝑅. The envelope function 𝐺𝑅(⋅) is 

defined as
𝐺 (𝑧) = sup

{

𝑚(𝑧, 𝑡) ∶ |𝑡 − 𝑡∗| ≤ 𝑅
}

𝑅 | |
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= sup
|𝑡−𝑡∗|≤𝑅

[(

𝑑𝑦
𝑝(𝑋)

−
(1 − 𝑑)𝑦
(1 − 𝑝(𝑋))

)

(

𝟏{𝑥 > 𝑡} − 𝟏{𝑥 > 𝑡∗}
)

]

=
|

|

|

|

𝑑𝑦
𝑝(𝑋)

−
(1 − 𝑑)𝑦
(1 − 𝑝(𝑋))

|

|

|

|

𝟏{|
|

𝑥 − 𝑡∗|
|

< 𝑅}

and I have:

𝑃𝐺2
𝑅 = E

[

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2
𝟏{|
|

𝑋 − 𝑡∗|
|

< 𝑅}

]

(8)

= E

[

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2
|

|

|

|

|

𝑋 ∈ (𝑡∗ − 𝑅, 𝑡∗ + 𝑅)

]

= 2𝑅E

[

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2
|

|

|

|

|

𝑋 = 𝑡∗
]

+ 𝑜(1) = 𝑂(𝑅)

where the second to last equality comes from Assumption 2.2. The envelope function is uniformly square-integrable for 𝑅 near 0, 
and therefore, the classes 𝑅 are uniformly manageable.

4. Define ℎ(𝑡) = 𝑃𝑚(𝑍, 𝑡) and consider derivatives:

ℎ(𝑡) =E𝑃
[(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

(𝟏{𝑋 > 𝑡} − 𝟏{𝑋 > 𝑡∗})
]

=

E𝑃
[(

𝑌1 − 𝑌0
)

(𝟏{𝑋 > 𝑡} − 𝟏{𝑋 > 𝑡∗})
]

ℎ′(𝑡) = − 𝑓𝑥(𝑡)E𝑃
[

𝑌1 − 𝑌0
|

|

|

𝑋 = 𝑡
]

ℎ′′(𝑡) = − 𝑓 ′
𝑥(𝑡)E𝑃

[

𝑌1 − 𝑌0
|

|

|

𝑋 = 𝑡
]

− 𝑓𝑥(𝑡)

(

𝜕E𝑃
[

𝑌1 − 𝑌0|𝑋 = 𝑡
]

𝜕𝑋

)

.

Assumption 2.3 with 𝑠 = 2 guarantees the existence of ℎ′ and ℎ′′. Since E𝑃
[

𝑌1 − 𝑌0
|

|

|

𝑋 = 𝑡∗
]

= 0, 𝐻 is given by

𝐻 = −ℎ′′(𝑡∗) = 𝑓𝑥(𝑡∗)

(

𝜕E𝑃
[

𝑌1 − 𝑌0|𝑋 = 𝑡∗
]

𝜕𝑋

)

.

5. This condition is divided into two parts. First, I prove the existence of 𝐾(𝑠, 𝑟) = lim𝛼→∞ 𝛼𝑃𝑚 (⋅, 𝑡∗ + 𝑟∕𝛼)𝑚 (⋅, 𝑡∗ + 𝑠∕𝛼) for each 
𝑠, 𝑟 in R. Covariance 𝐾 is:

𝑃𝑚
(

⋅, 𝑡∗ + 𝑟∕𝛼
)

𝑚
(

⋅, 𝑡∗ + 𝑠∕𝛼
)

= E

[

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2

(𝟏{𝑋 > 𝑡∗ + 𝑟∕𝛼} − 𝟏{𝑋 > 𝑡∗})(𝟏{𝑋 > 𝑡∗ + 𝑠∕𝛼} − 𝟏{𝑋 > 𝑡∗})
]

.

If 𝑟𝑠 < 0, covariance and 𝐾(𝑠, 𝑟) are 0. If 𝑟𝑠 > 0, and suppose 𝑟 > 0:

𝑃𝑚
(

⋅, 𝑡∗ + 𝑟∕𝛼
)

𝑚
(

⋅, 𝑡∗ + 𝑠∕𝛼
)

=

E

[

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2
|

|

|

𝑋 ∈ (𝑡∗, 𝑡∗ + min{𝑟, 𝑠}∕𝛼)

]

and hence

𝐾(𝑠, 𝑟) = lim
𝛼→∞

𝛼E

[

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2
|

|

|

𝑋 ∈ (𝑡∗, 𝑡∗ + min{𝑟, 𝑠}∕𝛼)

]

= min{𝑟, 𝑠}𝑓𝑥(𝑡∗)E

[

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2
|

|

|

𝑋 = 𝑡∗
]

.

where the equality is due to continuity of 𝑓𝑥 (Assumption 2.3 with 𝑠 = 2). Boundedness of the quantity follows from 
Assumptions 2.2 and 2.3.
Now, I will prove that lim𝛼→∞ 𝛼𝑃𝑚 (⋅, 𝑡∗ + 𝑟∕𝛼)2 𝟏 {|𝑚 (⋅, 𝑡∗ + 𝑟∕𝛼)| > 𝜀𝛼} = 0 for each 𝜀 > 0 and 𝑟 in R. I have:

𝛼𝑃𝑚
(

⋅, 𝑡∗ + 𝑟∕𝛼
)2 𝟏

{

|

|

|

𝑚
(

⋅, 𝑡∗ + 𝑟∕𝛼
)

|

|

|

> 𝜀𝛼
}

=

𝛼E

[

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2

(𝟏{𝑋 > 𝑡∗ + 𝑟∕𝛼} − 𝟏{𝑋 > 𝑡∗})2𝟏
{

|

|

|

𝑚
(

⋅, 𝑡∗ + 𝑟∕𝛼
)

|

|

|

> 𝜀𝛼
} ]

=

𝛼E

[

(

𝐷𝑌 −
(1 −𝐷)𝑌

)2
𝑝(𝑋) (1 − 𝑝(𝑋))

18 
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(𝟏{𝑋 > 𝑡∗ + 𝑟∕𝛼} − 𝟏{𝑋 > 𝑡∗})2𝟏
{

|

|

|

|

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

|

|

|

|

> 𝜀𝛼
}

]

≤

𝛼E

[

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2
𝟏
{

|

|

|

|

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

|

|

|

|

> 𝜀𝛼
}

]

.

Some algebra gives

E

[

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2
𝟏
{

|

|

|

|

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

|

|

|

|

> 𝜖
}

]

=

E

[(

𝐷𝑌 2
1

𝑝(𝑋)2
+

(1 −𝐷)𝑌 2
0

(1 − 𝑝(𝑋))2

)

𝟏
{

|

|

|

|

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

|

|

|

|

> 𝜖
}

]

=

E

[

𝑌 2
1

𝑝(𝑋)
𝟏
{

|

|

|

|

𝑌1
𝑝(𝑋)

|

|

|

|

> 𝜖
}

]

+ E

[

𝑌 2
0

(1 − 𝑝(𝑋))
𝟏
{

|

|

|

|

𝑌0
(1 − 𝑝(𝑋))

|

|

|

|

> 𝜖
}

]

=

1
𝑝(𝑋)

E
[

𝑌 2
1 𝟏

{

|

|

𝑌1|| > 𝜖1
}]

+ 1
(1 − 𝑝(𝑋))

E
[

𝑌 2
0 𝟏

{

|

|

𝑌0|| > 𝜖0
}]

and hence the condition is satisfied if
lim
𝛼→∞

𝛼E
[

𝑌 2
1 𝟏

{

|

|

𝑌1|| > 𝜖𝛼
}]

= 0

lim
𝛼→∞

𝛼E
[

𝑌 2
0 𝟏

{

|

|

𝑌0|| > 𝜖𝛼
}]

= 0.

Consider the limit for 𝑌1:

lim
𝛼→∞

𝛼E
[

𝑌 2
1 𝟏

{

|

|

𝑌1|| > 𝜖𝛼
}]

= lim
𝛼→∞

∫𝜖𝛼 𝑌
2
1 𝜑1(𝑦1)𝑑𝑦1
𝛼−1

= lim
𝛼→∞

𝜖3𝛼2𝜑1(𝜖𝛼)
𝛼−2

=

lim
𝛼→∞

𝜖3𝛼4𝜑1(𝜖𝛼) = lim
𝛼→∞

𝜖3𝛼4|𝜖𝛼|−(4+𝛿)𝑜(1) = 0

where the second to last equality follows from Assumption  3.
6. I showed that 𝑃𝐺2

𝑅 = 𝑂(𝑅) as 𝑅 → 0 in Eq.  (8). I need to prove that for each 𝜀 > 0 there is a constant C such that 
𝑃𝐺2

𝑅𝟏{𝐺𝑅 > 𝐶} ≤ 𝜀𝑅 for 𝑅 near 0. For any 𝜀 > 0 and 𝐶 > 0:

𝑃𝐺2
𝑅𝟏{𝐺𝑅 > 𝐶} = E

[

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2
𝟏{|
|

𝑋 − 𝑡∗|
|

< 𝑅}𝟏{𝐺𝑅 > 𝐶}
]

≤

E

[

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2
𝟏{|
|

𝑋 − 𝑡∗|
|

< 𝑅}𝟏
{

|

|

|

|

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

|

|

|

|

> 𝐶
}

]

≤

E

[

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2
𝟏
{

|

|

|

|

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

|

|

|

|

> 𝐶
}

]

→ 0

where the last limit is taken for 𝐶 → ∞, and follows from Assumption  3.
7. I need to show that 𝑃 |

|

|

𝑚
(

⋅, 𝑡1
)

− 𝑚
(

⋅, 𝑡2
)

|

|

|

= 𝑂
(

|

|

𝑡1 − 𝑡2||
) near 𝑡∗. Consider 𝑡2 > 𝑡1:

𝑃 |

|

|

𝑚
(

⋅, 𝑡1
)

− 𝑚
(

⋅, 𝑡2
)

|

|

|

= E

[

|

|

|

|

|

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

(𝟏{𝑋 > 𝑡1} − 𝟏{𝑋 > 𝑡2})
|

|

|

|

|

]

≤

𝑀𝑥E

[

|

|

|

|

|

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

|

|

|

|

|

|

|

|

𝑋 ∈ (𝑡1, 𝑡2)

]

≤𝑀𝑥𝑀𝑦|𝑡2 − 𝑡1|

where 𝑀𝑥 = max𝑥∈(𝑡1 ,𝑡2) 𝑓𝑥(𝑥) and 𝑀𝑦 = max𝑥∈(𝑡1 ,𝑡2) E
[

|

|

|

|

(

𝐷𝑌
𝑝(𝑋) −

(1−𝐷)𝑌
(1−𝑝(𝑋))

)

|

|

|

|

|

|

|

𝑋
]

. 𝑀𝑥 < ∞ and 𝑀𝑦 < ∞ because of Assumption 
2.3.

Assumptions 1–7 of Theorem 1.1 in Kim and Pollard (1990) are hence satisfied. It follows that, for 𝑛→ ∞,

𝑛1∕3
(

𝑡𝑒𝑛 − 𝑡
∗) →𝑑 argmax

𝑟
𝑄(𝑟)

where 𝑄(𝑟) = 𝑄1(𝑟) +𝑄0(𝑟), and 𝑄1 is a non degenerate zero-mean Gaussian process with covariance 𝐾, while 𝑄0(𝑟) is non-random 
and 𝑄0(𝑟) = − 1

2 𝑟
2𝐻 . By Assumptions 2.3 and 3.1, 𝐻 ≠ 0.

Limiting distribution argmax𝑟𝑄(𝑟) is of Chernoff (1964) type. It can be shown Banerjee and Wellner (2001) that

argmax
𝑟

𝑄(𝑟) =𝑑 (2
√

𝐾∕𝐻)
2
3 argmax

𝑟
𝐵(𝑟) − 𝑟2

where 𝐵(𝑟) is the two-sided Brownian motion process, 𝐾 is:

𝐾 =𝑓𝑥(𝑡∗)E

[

(

𝐷𝑌 −
(1 −𝐷)𝑌

)2
|

|

|

𝑋 = 𝑡∗
]

𝑝(𝑋) (1 − 𝑝(𝑋))
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=𝑓𝑥(𝑡∗)
(

1
𝑝(𝑡∗)

E[𝑌 2
1 |𝑋 = 𝑡∗] + 1

1 − 𝑝(𝑡∗)
E[𝑌 2

0 |𝑋 = 𝑡∗]
)

and 𝐻 is:

𝐻 = 𝑓𝑥(𝑡∗)

(

𝜕E𝑃
[

𝑌1 − 𝑌0|𝑋 = 𝑡∗
]

𝜕𝑋

)

.

This completes the proof of the theorem. □

Corollary  2.1.  The asymptotic distribution of regret (𝑡𝑒𝑛) is:

𝑛
2
3 (𝑡𝑒𝑛) →

𝑑
(

2𝐾2

𝐻

)
1
3
(

argmax
𝑟

𝐵(𝑟) − 𝑟2
)2

.

The expected value of the asymptotic distribution is 𝐾 2
3𝐻− 1

3 𝐶𝑒, where

𝐶𝑒 = 3
√

2E

[

(

argmax
𝑟

𝐵(𝑟) − 𝑟2
)2

]

is a constant not dependent on 𝑃 .

Proof.  Result in Eq.  (2) for 𝑡𝑒𝑛 implies

𝑛
2
3 (𝑡𝑒𝑛) =

1
2
𝑊 ′′(𝑡)

(

𝑛
1
3
(

𝑡𝑒𝑛 − 𝑡
∗)
)2
,

where |𝑡 − 𝑡∗| ≤ |𝑡𝑛 − 𝑡∗|. By continuous mapping theorem
𝑊 ′′(𝑡) →𝑝 𝑊 ′′(𝑡∗) = 𝐻

and hence by Slutsky’s theorem

𝑛
2
3
(

𝑊 (𝑡𝑛) −𝑊 (𝑡∗)
)

→𝑑
(

2𝐾2

𝐻

)
1
3
(

argmax
𝑟

𝐵(𝑟) − 𝑟2
)2

. □

Theorem  3.  Consider the SWM policy 𝑡𝑠𝑛 defined in Eq.  (4) and the optimal policy 𝑡∗ defined in Eq.  (1). Under Assumptions  1, 2 (with 
𝑠 = 0), and 4,

𝑡𝑠𝑛 →
𝑎.𝑠. 𝑡∗

i.e. 𝑡𝑠𝑛 is a strongly consistent estimator for 𝑡∗.

Proof.  To prove the result, I show that conditions for Theorem 4.1.1 in Amemiya (1985) hold, and hence 𝑡𝑠𝑛 is consistent for 𝑡∗.
First, define function 𝑚𝑠(𝑍, 𝑡):

𝑚𝑠 (𝑍, 𝑡) =
(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)(

𝑘
(

𝑋 − 𝑡
𝜎𝑛

)

− 𝑘
(

𝑋 − 𝑡∗
𝜎𝑛

))

and recall definitions of 𝑚(𝑍, 𝑡), 𝑃𝑛, and 𝑃  introduced in the proof of Theorem  2:

𝑚 (𝑍, 𝑡) =
(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

(

𝟏{𝑋 > 𝑡} − 𝟏{𝑋 > 𝑡∗}
)

𝑃𝑛𝑚 (⋅, 𝑡) =
𝑛
∑

𝑖=1
𝑚
(

𝑍𝑖, 𝑡
)

𝑃𝑚 (𝑍, 𝑡) = E𝑃 [𝑚 (𝑍, 𝑡)].

In this notation, 𝑡𝑠𝑛 = argmax𝑡 𝑃𝑛𝑚𝑠(., 𝑡) and 𝑡∗ = argmax𝑡 𝑃𝑚(𝑍, 𝑡). I can now show that conditions 𝐴, 𝐵, and 𝐶 for Theorem 4.1.1 
in Amemiya (1985) hold:
(A) Parameter space   is compact by Assumption 2.1.
(B) Function 𝑃𝑛𝑚𝑠

(

𝑍𝑖, 𝑡
) is continuous in 𝑡 for all 𝑍 and is a measurable function of 𝑍 for all 𝑡 ∈  , as 𝑘(⋅) is continuous by 

Assumption  4.
(C1) I need to prove that 𝑃𝑛𝑚𝑠

(

𝑍𝑖, 𝑡
) converges a.s. to 𝑃𝑚(𝑍, 𝑡) uniformly in 𝑡 ∈   as 𝑛 → ∞, i.e. sup𝑡 ||𝑃𝑛𝑚𝑠(⋅, 𝑡) − 𝑃𝑚(𝑍, 𝑡)|| →𝑎.𝑠. 0. 

Note that:
sup
𝑡
|

|

𝑃𝑛𝑚
𝑠(⋅, 𝑡) − 𝑃𝑚(𝑍, 𝑡)|

|

≤

sup
𝑡
|

|

𝑃𝑛𝑚
𝑠(⋅, 𝑡) − 𝑃𝑚𝑠(𝑍, 𝑡)|

|

+ sup
𝑡
|𝑃𝑚𝑠(⋅, 𝑡) − 𝑃𝑚(𝑍, 𝑡)| .
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I need to show that the two addends on the right-hand side converge to zero.
To show uniform convergence of 𝑃𝑛𝑚𝑠(⋅, 𝑡) to 𝑃𝑚𝑠(𝑍, 𝑡), I consider sufficient conditions provided by Theorem 4.2.1 in Amemiya 
(1985). 𝑚𝑠(𝑍, 𝑡) is continuous in 𝑡 ∈   with   compact, and measurable in 𝑍. I only need to show that E[sup𝑡∈ |𝑚𝑠(𝑍, 𝑡)|] <∞. 
By Assumption  4, 𝑘(⋅) is a bounded function, i.e. it exists an 𝑀 such that |𝑘(𝑥)| < 𝑀 for all 𝑥. Hence E[sup𝑡∈ |𝑚𝑠(𝑍, 𝑡)|] ≤
𝑀E

[

|

|

|

𝐷𝑌
𝑝(𝑋) −

(1−𝐷)𝑌
(1−𝑝(𝑋))

|

|

|

]

, and E
[

|

|

|

𝐷𝑌
𝑝(𝑋) −

(1−𝐷)𝑌
(1−𝑝(𝑋))

|

|

|

]

<∞ by Assumption 2.2.
To show uniform convergence of 𝑃𝑚𝑠(⋅, 𝑡) to 𝑃𝑚(𝑍, 𝑡), note that 𝑡 ∈  , where   is bounded, and hence the result holds for 
𝜎𝑛 → 0.

(C2) By Assumption 2.1, 𝑡∗ is the unique global maximum of 𝑃𝑚(𝑍, 𝑡).
Assumptions 𝐴, 𝐵, 𝐶 of Theorem 4.1.1 in Amemiya (1985) are satisfied, and hence 𝑡𝑠𝑛 →𝑎.𝑠. 𝑡∗. □

Proof of Theorem  4 requires some intermediate lemmas, stated and proved below. Arguments follow the ideas in Horowitz (1992), 
but are adapted to my context. I report the entire proof for completeness, even when it overlaps with the original in Horowitz (1992).

To make the notation simpler, define:

𝑆̂𝑛(𝑡, 𝜎𝑛) =
1
𝑛

𝑛
∑

𝑖=1

[(

𝐷𝑖𝑌𝑖
𝑝(𝑋𝑖)

−
(1 −𝐷𝑖)𝑌𝑖
(1 − 𝑝(𝑋𝑖))

)

𝑘
(

𝑋𝑖 − 𝑡
𝜎𝑛

)]

and note that 𝑡𝑠𝑛 = argmax𝑡 𝑆̂𝑛(𝑡, 𝜎𝑛). Then define:

𝑆̂1
𝑛 (𝑡, 𝜎𝑛) =

𝜕𝑆̂𝑛(𝑡, 𝜎𝑛)
𝜕𝑡

= − 1
𝜎𝑛

1
𝑛

𝑛
∑

𝑖=1

[(

𝐷𝑖𝑌𝑖
𝑝(𝑋𝑖)

−
(1 −𝐷𝑖)𝑌𝑖
(1 − 𝑝(𝑋𝑖))

)

𝑘′
(

𝑋𝑖 − 𝑡
𝜎𝑛

)]

𝑆̂2
𝑛 (𝑡, 𝜎𝑛) =

𝜕𝑆̂𝑛(𝑡, 𝜎𝑛)
𝜕2𝑡

= 1
𝜎2𝑛

1
𝑛

𝑛
∑

𝑖=1

[(

𝐷𝑖𝑌𝑖
𝑝(𝑋𝑖)

−
(1 −𝐷𝑖)𝑌𝑖
(1 − 𝑝(𝑋𝑖))

)

𝑘′′
(

𝑋𝑖 − 𝑡
𝜎𝑛

)]

.

Indicate with 𝜑𝑦,𝑥(𝑦, 𝑥) the joint distribution of 𝑌1, 𝑌0, and 𝑋, and with 𝜑𝑦|𝑥(𝑦|𝑥) the conditional distribution, where 𝜑𝑦,𝑥(𝑦, 𝑥) =
𝜑𝑦|𝑥(𝑦|𝑥)𝑓𝑥(𝑥).

Lemma 1.  Let Assumptions  1, 2 (with 𝑠 = ℎ + 1 for some ℎ ≥ 2), and 5 hold. Then
lim
𝑛→∞

E
[

𝜎−ℎ𝑛 𝑆̂1
𝑛 (𝑡

∗, 𝜎𝑛)
]

= 𝐴

lim
𝑛→∞

Var
[

(𝑛𝜎𝑛)
1
2 𝑆̂1

𝑛 (𝑡
∗, 𝜎𝑛)

]

= 𝛼2𝐾.

Proof.  First, I will prove that lim𝑛→∞ E
[

𝜎−ℎ𝑛 𝑆̂1
𝑛 (𝑡

∗, 𝜎𝑛)
]

= 𝐴:

E
[

𝜎−ℎ𝑛 𝑆̂1
𝑛 (𝑡

∗, 𝜎𝑛)
]

= −
𝜎−ℎ𝑛
𝜎𝑛

E
[(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′
(

𝑋𝑖 − 𝑡∗

𝜎𝑛

)]

= −
𝜎−ℎ𝑛
𝜎𝑛

E
[

(

𝑌1 − 𝑌0
)

𝑘′
(

𝑋𝑖 − 𝑡∗

𝜎𝑛

)]

= −𝜎−ℎ𝑛 ∫𝑥 ∫𝑦

(

𝑌1 − 𝑌0
) 1
𝜎𝑛
𝑘′

(

𝑋𝑖 − 𝑡∗

𝜎𝑛

)

𝜑𝑦,𝑥(𝑦, 𝑥)𝑑𝑦𝑑𝑥

= −𝜎−ℎ𝑛 ∫𝜁 ∫𝑦

(

𝑌1 − 𝑌0
)

𝑘′ (𝜁 )𝜑𝑦,𝑥(𝑦, 𝑡∗ + 𝜁𝜎𝑛)𝑑𝑦𝑑𝜁

where in the last line I made the substitution 𝜁 = 𝑋𝑖−𝑡∗

𝜎𝑛
. Consider the Taylor expansion of 𝜑 around 𝜑(𝑦, 𝑡∗):

𝜑(𝑦, 𝑡∗ + 𝜁𝜎𝑛) = 𝜑(𝑦, 𝑡∗) + 𝜁𝜎𝑛𝜑1
2(𝑦, 𝑡

∗) + 1
2
(𝜁𝜎𝑛)2𝜑2

2(𝑦, 𝑡
∗) +⋯

= 𝜑(𝑦, 𝑡∗) +

(ℎ−1
∑

𝑖=1

1
𝑖!
𝜑𝑖2(𝑦, 𝑥 = 𝑡∗)𝜁 𝑖𝜎𝑖𝑛

)

+ 1
ℎ!
𝜑ℎ2 (𝑦, 𝑡)𝜁

ℎ𝜎ℎ𝑛

with |𝑡 − 𝑡∗| ≤ |𝑡∗ + 𝜁𝜎𝑛 − 𝑡∗|. Existence of 𝜑𝑚2 (𝑦, 𝑥), the 𝑚-derivatives of 𝜑(𝑦, 𝑥) with respect to its second argument, is guaranteed by 
Assumptions 2.3 with 𝑠 = ℎ + 1.

Write E [

𝜎−ℎ𝑛 𝑆̂1
𝑛 (𝑡

∗, 𝜎𝑛)
] as 𝐼𝑛1 + 𝐼𝑛2 + 𝐼𝑛3, where:

𝐼𝑛1 = − 𝜎−ℎ𝑛 ∫𝜁 ∫𝑦

(

𝑌1 − 𝑌0
)

𝑘′ (𝜁 )𝜑(𝑦, 𝑡∗)𝑑𝑦𝑑𝜁

= − 𝜎−ℎ𝑛 ∫𝜁
𝑘′ (𝜁 ) 𝑑𝜁 ∫𝑦

(

𝑌1 − 𝑌0
)

𝜑(𝑦, 𝑡∗)𝑑𝑦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=E[𝑌1−𝑌0|𝑋=𝑡∗]=0

= 0

𝐼𝑛2 = − 𝜎−ℎ𝑛 ∫ ∫
(

𝑌1 − 𝑌0
)

𝑘′ (𝜁 )

(ℎ−1
∑ 1 𝜑𝑖2(𝑦, 𝑥 = 𝑡∗)𝜁 𝑖𝜎𝑖𝑛

)

𝑑𝑦𝑑𝜁

𝜁 𝑦 𝑖=1 𝑖!
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=𝜎−ℎ𝑛 ∫𝑦

(

𝑌1 − 𝑌0
)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ℎ−1
∑

𝑖=1

1
𝑖!
𝜑𝑖2(𝑦, 𝑥 = 𝑡∗)𝜎𝑖𝑛 ∫𝜁

𝑘′ (𝜁 ) 𝜁 𝑖𝑑𝜁

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
=0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝑑𝑦 = 0.

Result on 𝐼𝑛1 follows from definition of 𝑡∗, while Assumptions 5.2 guarantees result on 𝐼𝑛2. Finally, consider 𝐼𝑛3:

𝐼𝑛3 = − 𝜎−ℎ𝑛 ∫𝜁 ∫𝑦

(

𝑌1 − 𝑌0
)

𝑘′ (𝜁 ) 1
ℎ!
𝜑ℎ2 (𝑦, 𝑡)𝜁

ℎ𝜎ℎ𝑛 𝑑𝑦𝑑𝜁

= − 1
ℎ! ∫𝜁

𝑘′ (𝜁 ) 𝜁ℎ𝑑𝜁 ∫𝑦

(

𝑌1 − 𝑌0
)

𝜑ℎ2 (𝑦, 𝑡)𝑑𝑦

and conclude that:

lim
𝑛→∞

E
[

𝜎−ℎ𝑛 𝑆̂1
𝑛 (𝑡

∗, 𝜎𝑛)
]

= − 1
ℎ! ∫𝜁

𝜁ℎ𝑘′ (𝜁 ) 𝑑𝜁 ∫𝑦

(

𝑌1 − 𝑌0
)

𝜑ℎ2 (𝑦, 𝑡
∗)𝑑𝑦 = 𝐴.

Now I will prove that lim𝑛→∞ Var
[

(𝑛𝜎𝑛)
1
2 𝑆̂1

𝑛 (𝑡
∗, 𝜎𝑛)

]

= 𝛼2𝐾. Note that:

Var
[

(𝑛𝜎𝑛)
1
2 𝑆̂1

𝑛 (𝑡
∗, 𝜎𝑛)

]

=Var

[

(𝑛𝜎𝑛)
− 1

2

𝑛
∑

𝑖=1

[(

𝐷𝑖𝑌𝑖
𝑝(𝑋𝑖)

−
(1 −𝐷𝑖)𝑌𝑖
(1 − 𝑝(𝑋𝑖))

)

𝑘′
(

𝑋𝑖 − 𝑡∗

𝜎𝑛

)]

]

=𝜎𝑛 Var
[

1
𝜎𝑛

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′
(

𝑋 − 𝑡∗
𝜎𝑛

)]

=𝜎𝑛E

[

1
𝜎2𝑛

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2
𝑘′

(

𝑋 − 𝑡∗
𝜎𝑛

)2
]

−

𝜎𝑛E
[

1
𝜎𝑛

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′
(

𝑋 − 𝑡∗
𝜎𝑛

)]2
.

The second term in the last expression goes to 0 as 𝑛→ ∞. For the first term, observe that:

𝜎𝑛E

[

1
𝜎𝑛

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2
𝑘′

(

𝑋 − 𝑡∗
𝜎𝑛

)2
]

=

∫𝑥 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2
𝑘′

(

𝑋 − 𝑡∗
𝜎𝑛

)2 1
𝜎𝑛
𝜑𝑦,𝑥(𝑦, 𝑥)𝑑𝑦𝑑𝑥 =

∫𝜁 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2
𝑘′ (𝜁 )2 𝜑𝑦,𝑥(𝑦, 𝑡∗ + 𝜁𝜎𝑛)𝑑𝑦𝑑𝜁

where in the last line I made the substitution 𝜁 = 𝑋𝑖−𝑡∗

𝜎𝑛
. Conclude that

Var
[

(𝑛𝜎𝑛)
1
2 𝑆̂1

𝑛 (𝑡
∗, 𝜎𝑛)

]

=∫𝜁
𝑘′ (𝜁 )2 𝑑𝜁𝑓𝑥(𝑡∗)E

[

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2
|𝑋 = 𝑡∗

]

=𝛼2𝐾.

Note that 𝛼2𝐾 is bounded by Assumptions 2.2, 2.3, and 5.2. □

Lemma 2.  Let Assumptions  1, 2 (with 𝑠 = ℎ + 1 for some ℎ ≥ 2), and 5 hold. If 𝑛𝜎2ℎ+1𝑛 → ∞, 𝜎−ℎ𝑛 𝑆̂1
𝑛 (𝑡

∗, 𝜎𝑛) converges in probability to 
A. If 𝑛𝜎2ℎ+1𝑛  has a finite limit 𝜆, (𝑛𝜎𝑛)

1
2 𝑆̂1

𝑛 (𝑡
∗, 𝜎𝑛) converges in distribution to  (𝜆

1
2𝐴, 𝛼2𝐾).

Proof.  Note that

Var
[

(𝜎𝑛)−ℎ𝑆̂1
𝑛 (𝑡

∗, 𝜎𝑛)
]

= (𝑛𝜎2ℎ+1𝑛 )−1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

→0

Var
[

(𝑛𝜎𝑛)
1
2 𝑆̂1

𝑛 (𝑡
∗, 𝜎𝑛)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
→𝛼2𝐾

.

So the first result follows from Lemma  1 and Chebyshev’s inequality.
For the second result, first note that under the stated assumptions and from Lemma  1,

E
[

(𝑛𝜎𝑛)
1
2 𝑆̂1

𝑛 (𝑡
∗, 𝜎𝑛)

]

= (𝑛𝜎2ℎ+1𝑛 )
1
2

⏟⏞⏞⏟⏞⏞⏟

→𝜆
1
2

E
[

𝜎−ℎ𝑛 𝑆̂1
𝑛 (𝑡

∗, 𝜎𝑛)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐴

and so the result follows if I show that

𝑈 = (𝑛𝜎 )
1
2
(

𝑆̂1(𝑡∗, 𝜎 ) − E
[

𝑆̂1(𝑡∗, 𝜎 )
])

→𝑑  (0, 𝛼 𝐾).
𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 2
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Note that

𝑈𝑛 =(𝑛𝜎𝑛)
1
2
1
𝑛

𝑛
∑

𝑖=1

⎡

⎢

⎢

⎢

⎢

⎣

(

𝐷𝑖𝑌𝑖
𝑝(𝑋𝑖)

−
(1 −𝐷𝑖)𝑌𝑖
(1 − 𝑝(𝑋𝑖))

)

𝑘′
(

𝑋𝑖 − 𝑡
𝜎𝑛

)

1
𝜎𝑛

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐵

−E[𝐵]

⎤

⎥

⎥

⎥

⎥

⎦

=
𝑛
∑

𝑖=1

(𝜎𝑛
𝑛

)
1
2 (𝐵 − E[𝐵])

and hence 𝑈𝑛 has characteristic function 𝜓(𝜏)𝑛, where

𝜓(𝜏) = E

[

exp

(

𝑖𝜏
(𝜎𝑛
𝑛

)
1
2 (𝐵 − E[𝐵])

)]

and

𝜓 ′(𝜏) = E

[

𝑖
(𝜎𝑛
𝑛

)
1
2 (𝐵 − E[𝐵]) exp

(

𝑖𝜏
(𝜎𝑛
𝑛

)
1
2 (𝐵 − E[𝐵])

)]

𝜓 ′′(𝜏) = E

[

−
𝜎𝑛
𝑛
(𝐵 − E[𝐵]) exp

(

𝑖𝜏
(𝜎𝑛
𝑛

)
1
2 (𝐵 − E[𝐵])

)]

.

Note that 𝜓 ′(0) = 0 and 𝜓 ′′(0) = − 𝜎𝑛
𝑛 Var(𝐵) = − 1

𝑛 (𝛼2𝐾 + 𝑜(1)), since Lemma  1 proved that lim𝑛→∞ 𝜎𝑛 Var(𝐵) = 𝛼2𝐾.
A Taylor series expansion of 𝜓(𝜏) about 𝜏 = 0 yields:

𝜓(𝜏) = 𝜓(0)
⏟⏟⏟

=1

+ 𝜓 ′(0)
⏟⏟⏟

=0

𝜏 + 1
2
𝜓 ′′(0)
⏟⏟⏟
=− 𝛼2𝐾

𝑛

𝜏2 + 𝑜
(

𝜏2

𝑛

)

= 1 − 1
2𝑛
𝛼2𝐾𝜏

2 + 𝑜
(

𝜏2

𝑛

)

and hence the characteristic function of 𝑈𝑛 has limit:

lim
𝑛→∞

[

1 − 1
2𝑛
𝛼2𝐾𝜏

2 + 𝑜
(

𝜏2

𝑛

)]𝑛
= exp

(

−𝛼2𝐾
𝜏2

2

)

.

Since exp
(

−𝛼2𝐾
𝜏2

2

)

 is the characteristic function of  (0, 𝛼2𝐾), the second result of the lemma holds. □

Lemma 3.  Let Assumptions  1, 2 (with 𝑠 = ℎ + 1 for some ℎ ≥ 2), and 5 hold. Let 𝜂 > 0 be such that 𝜑𝑦,𝑥(𝑦, 𝑥) has second derivative 
uniformly bounded for almost every 𝑋 if |𝑋 − 𝑡∗| < 𝜂. For 𝜃 ∈ R, define 𝑆̂𝜃𝑛 (𝜃) by

𝑆̂𝜃𝑛 (𝜃) = −(𝑛𝜎2𝑛 )
−1

𝑛
∑

𝑖=1

[(

𝐷𝑖𝑌𝑖
𝑝(𝑋𝑖)

−
(1 −𝐷𝑖)𝑌𝑖
(1 − 𝑝(𝑋𝑖))

)

𝑘′
(

𝑋𝑖 − 𝑡∗

𝜎𝑛
+ 𝜃

)]

.

Define the sets 𝛩𝑛(𝑛 = 1, 2,…) by 𝛩𝑛 = {𝜃 ∶ 𝜃 ∈ R, 𝜎𝑛|𝜃| ≤
𝜂
2 }. Then

plim𝑛→∞ sup
𝜃∈𝛩𝑛

|𝑆̂𝜃𝑛 (𝜃) − E[𝑆̂𝜃𝑛 (𝜃)]| = 0.

In addition, there are finite numbers 𝑎1 and 𝑎2 such that for all 𝜃 ∈ 𝛩𝑛

|E[𝑆̂𝜃𝑛 (𝜃)] −𝐻𝜃| ≤ 𝑜(1) + 𝑎1𝜎𝑛|𝜃| + 𝑎2𝜎𝑛𝜃2

uniformly over 𝜃 ∈ 𝛩𝑛.

Proof.  To prove the first result, first define

−𝑔𝑖(𝜃) =
(

𝐷𝑖𝑌𝑖
𝑝(𝑋𝑖)

−
(1 −𝐷𝑖)𝑌𝑖
(1 − 𝑝(𝑋𝑖))

)

𝑘′
(

𝑋𝑖 − 𝑡∗

𝜎𝑛
+ 𝜃

)

−

E
[(

𝐷𝑖𝑌𝑖
𝑝(𝑋𝑖)

−
(1 −𝐷𝑖)𝑌𝑖
(1 − 𝑝(𝑋𝑖))

)

𝑘′
(

𝑋𝑖 − 𝑡∗

𝜎𝑛
+ 𝜃

)]

.

It is necessary to prove that for any 𝜀 > 0

lim
𝑛→∞

Pr

[

sup
𝜃∈𝛩𝑛

(

𝑛𝜎2𝑛
)−1

|

|

|

|

|

|

𝑁
∑

𝑛=1
𝑔𝑖(𝜃)

|

|

|

|

|

|

> 𝜀

]

= 0.

Given any 𝛿 > 0, divide each set 𝛩𝑛 into nonoverlapping subsets 𝛩𝑛𝑗 (𝑗 = 1, 2,…) such that the distance between any two points in 
the same subset does not exceed 𝛿𝜎2𝑛 and the number 𝛤𝑛 of subsets does not exceed 𝐶𝜎−3(𝑞−1)𝑛  for some 𝐶 > 0. Let {𝜃𝑁𝑖

} be a set of 
vectors such that 𝜃𝑛𝑗 ∈ 𝛩𝑛𝑗 . Then

Pr

[

sup
(

𝑛𝜎2𝑛
)−1 |

|

|

|

𝑛
∑

𝑔𝑖(𝜃)
|

|

|

|

> 𝜀

]

𝜃∈𝛩𝑛
|𝑛=1 |
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=Pr

[ 𝛤𝑛
⋃

𝑗=1
sup
𝜃∈𝛩𝑛𝑗

(

𝑛𝜎2𝑛
)−1 |

|

|

|

|

𝑛
∑

𝑖=1
𝑔𝑖(𝜃)

|

|

|

|

|

> 𝜀

]

⩽
𝛤𝑛
∑

𝑗=1
Pr

[

sup
𝜃∈𝛩𝑛𝑗

(

𝑛𝜎2𝑛
)−1 |

|

|

|

|

𝑛
∑

𝑖=1
𝑔𝑖(𝜃)

|

|

|

|

|

> 𝜀

]

⩽
𝛤𝑛
∑

𝑗=1
Pr

[

(

𝑛𝜎2𝑛
)−1 |

|

|

|

|

𝑛
∑

𝑖=1
𝑔𝑖
(

𝜃𝑛𝑗
)

|

|

|

|

|

> 𝜀∕2

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐵1

+
𝛤𝑛
∑

𝑗=1
Pr

[

(

𝑛𝜎2𝑛
)−1

𝑛
∑

𝑖=1
sup
𝜃∈𝛩𝑛𝑗

|

|

|

𝑔𝑖(𝜃) − 𝑔𝑖
(

𝜃𝑛𝑗
)

|

|

|

> 𝜀∕2

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐵2

,

where the last two lines follow from the triangle inequality. By Hoeffding’s inequality, there are finite numbers 𝑐1 > 0 and 𝑐2 > 0
such that

Pr

[

(

𝑛𝜎2𝑛
)−1 |

|

|

|

|

𝑛
∑

𝑖=1
𝑔𝑖
(

𝜃𝑛𝑗
)

|

|

|

|

|

> 𝜀∕2

]

⩽ 𝑐1 exp
(

−𝑐2𝑛𝜎4𝑛
)

.

Therefore, 𝐵1 is bounded by 𝐶𝑐1𝜎−3(𝑞−1)𝑛 exp
(

−𝑐2𝑛𝜎4𝑛
)

, which converges to 0 as 𝑛→ ∞ by Assumption 5.1. In addition, by Assumption 
4 there is a finite 𝑐3 > 0 such that if 𝜃 ∈ 𝛩𝑛𝑗 ,

|

|

|

|

|

−
(

𝐷𝑖𝑌𝑖
𝑝(𝑋𝑖)

−
(1 −𝐷𝑖)𝑌𝑖
(1 − 𝑝(𝑋𝑖))

)[

𝑘′
(

𝑋𝑖 − 𝑡∗

𝜎𝑛
+ 𝜃

)

− 𝑘′
(

𝑋𝑖 − 𝑡∗

𝜎𝑛
+ 𝜃𝑛𝑗

)]

|

|

|

|

|

⩽ 𝑐3
|

|

|

𝜃 − 𝜃𝑛𝑗
|

|

|

⩽ 𝑐3𝛿𝜎
2
𝑛 .

So
(

𝑛𝜎2𝑛
)−1

𝑛
∑

𝑖=1
sup
𝜃∈𝛩𝑛𝑗

|

|

|

𝑔𝑖(𝜃) − 𝑔𝑖
(

𝜃𝑛𝑗
)

|

|

|

⩽ 2𝑐3𝛿.

Choose 𝛿 < 𝜀∕4𝑐3. Then 𝐵2 is 0. This establishes plim𝑛→∞ sup𝜃∈𝛩𝑛 |𝑆̂
𝜃
𝑛 (𝜃) − E[𝑆̂𝜃𝑛 (𝜃)]| = 0.

To prove the second result, start noting that

E[𝑆̂𝜃𝑛 (𝜃)] = −𝜎−2𝑛 E
[(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′
(

𝑋 − 𝑡∗
𝜎𝑛

+ 𝜃
)]

= 𝐼𝑛1 + 𝐼𝑛2

where

𝐼𝑛1 = −𝜎−2𝑛 ∫
|𝑋−𝑡∗|≤𝜂 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′
(

𝑋 − 𝑡∗
𝜎𝑛

+ 𝜃
)

𝜑(𝑦, 𝑥)𝑑𝑦𝑑𝑥

𝐼𝑛2 = −𝜎−2𝑛 ∫
|𝑋−𝑡∗|>𝜂 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′
(

𝑋 − 𝑡∗
𝜎𝑛

+ 𝜃
)

𝜑(𝑦, 𝑥)𝑑𝑦𝑑𝑥.

First, consider 𝐼𝑛2 and observe that

𝐼𝑛2 = −𝜎−2𝑛 ∫
|𝑋−𝑡∗|>𝜂

𝑘′
(

𝑋 − 𝑡∗
𝜎𝑛

+ 𝜃
)

∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝜑(𝑦|𝑥)𝑑𝑦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=E[𝑌1−𝑌0|𝑋]

𝑓𝑥(𝑥)𝑑𝑥

and since E[𝑌1 − 𝑌0|𝑋] is bounded by Assumption 2.2,

|𝐼𝑛2| ≤
|

|

|

|

|

𝐶𝜎−2𝑛 ∫
|𝑋−𝑡∗|>𝜂

𝑘′
(

𝑋 − 𝑡∗
𝜎𝑛

+ 𝜃
)

𝑓𝑥(𝑥)𝑑𝑥
|

|

|

|

|

.

Define 𝜁 = 𝑋−𝑡∗
𝜎𝑛

+ 𝜃. Since 𝜎𝑛|𝜃| ≤ 𝜂
2 , when |𝑋 − 𝑡∗| > 𝜂

|𝜁 | =
|

|

|

|

𝑋 − 𝑡∗
𝜎𝑛

+ 𝜃
|

|

|

|

= ±
(

𝑋 − 𝑡∗
𝜎𝑛

+ 𝜃
)

≥ ±
(

𝑋 − 𝑡∗
𝜎𝑛

)

− |𝜃| =
|

|

|

|

𝑋 − 𝑡∗
𝜎𝑛

|

|

|

|

− |𝜃|

≥
|

|

|

|

𝑋 − 𝑡∗
𝜎𝑛

|

|

|

|

−
𝜂
2𝜎𝑛

>
𝜂
𝜎𝑛

−
𝜂
2𝜎𝑛

=
𝜂
2𝜎𝑛

.

and so the event |𝑋 − 𝑡∗| > 𝜂 implies |𝜁 | > 𝜂
2𝜎𝑛
. Then

|𝐼𝑛2| ≤
|

|

|𝐶𝜎−2𝑛 𝑘′
(

𝑋 − 𝑡∗ + 𝜃
)

𝑓𝑥(𝑥)𝑑𝑥
|

|

|

|

|

∫
|𝑋−𝑡∗|>𝜂 𝜎𝑛 |

|
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=
|

|

|

|

|

𝐶𝜎−1𝑛 ∫
|𝑋−𝑡∗|>𝜂

𝑘′ (𝜁 ) 𝑓𝑥(𝑡∗ − 𝜃𝜎𝑛)𝑑𝜁
|

|

|

|

|

≤

|

|

|

|

|

|

|

|

|

|

|

𝐶 𝑓𝑥(𝑡∗ − 𝜃𝜎𝑛)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

→𝑓𝑥(𝑡∗)

𝜎−1𝑛 ∫
|𝜁 |>𝜂∕𝜎𝑛

𝑘′ (𝜁 ) 𝑑𝜁

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
→0

|

|

|

|

|

|

|

|

|

|

|

.

The fact that 𝑓𝑥(𝑡∗ − 𝜃𝜎𝑛) → 𝑓𝑥(𝑡∗) bounded by Assumption 2.3 with 𝑠 = ℎ + 1 and 𝜎−1𝑛 ∫
|𝜁 |>𝜂∕𝜎𝑛

𝑘′ (𝜁 ) 𝑑𝜁 → 0 by Assumption 5.2 
implies

plim𝑛→∞ sup
𝜃∈𝛩𝑛

|𝐼𝑛2| = 0.

Recall that 𝐼𝑛1 is defined as

𝐼𝑛1 = −𝜎−2𝑛 ∫
|𝑋−𝑡∗|≤𝜂 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′
(

𝑋 − 𝑡∗
𝜎𝑛

+ 𝜃
)

𝜑(𝑦, 𝑥)𝑑𝑦𝑑𝑥.

Consider a Taylor expansion of 𝜑(𝑦, 𝑥) about 𝑥 = 𝑡∗:

𝜑(𝑦, 𝑥) = 𝜑(𝑦, 𝑡∗) + 𝜑′(𝑦, 𝑡∗)(𝑥 − 𝑡∗) + 1
2
𝜑′′(𝑦, 𝑡)(𝑥 − 𝑡∗)2

with |𝑡 − 𝑡∗| ≤ |𝑥 − 𝑡∗|. Write 𝐼𝑛1 as 𝐽𝑛1 + 𝐽𝑛2 + 𝐽𝑛3 where

𝐽𝑛1 = − 𝜎−2𝑛 ∫
|𝑋−𝑡∗|≤𝜂 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′
(

𝑋 − 𝑡∗
𝜎𝑛

+ 𝜃
)

𝜑(𝑦, 𝑡∗)𝑑𝑦𝑑𝑥

= − 𝜎−2𝑛 E[𝑌1 − 𝑌0|𝑋 = 𝑡∗]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

∫
|𝑋−𝑡∗|≤𝜂

𝑘′
(

𝑋 − 𝑡∗
𝜎𝑛

+ 𝜃
)

𝑓𝑥(𝑡∗)𝑑𝑥 = 0

𝐽𝑛2 = − 𝜎−2𝑛 ∫
|𝑋−𝑡∗|≤𝜂 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′
(

𝑋 − 𝑡∗
𝜎𝑛

+ 𝜃
)

𝜑′(𝑦, 𝑡∗)(𝑥 − 𝑡∗)𝑑𝑦𝑑𝑥

𝐽𝑛3 = − 𝜎−2𝑛 ∫
|𝑋−𝑡∗|≤𝜂 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′
(

𝑋 − 𝑡∗
𝜎𝑛

+ 𝜃
)

1
2
𝜑′′(𝑦, 𝑡)(𝑥 − 𝑡∗)2𝑑𝑦𝑑𝑥.

Consider 𝐽𝑛2 and the substitution 𝜁 = 𝑋−𝑡∗
𝜎𝑛

+ 𝜃:

𝐽𝑛2 = − ∫
|𝜁−𝜃|≤𝜂∕𝜎𝑛 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′ (𝜁 ) (𝜁 − 𝜃)𝜑′(𝑦, 𝑡∗)𝑑𝑦𝑑𝜁

= − ∫
|𝜁−𝜃|≤𝜂∕𝜎𝑛 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′ (𝜁 ) 𝜁𝜑′(𝑦, 𝑡∗)𝑑𝑦𝑑𝜁+

∫
|𝜁−𝜃|≤𝜂∕𝜎𝑛 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′ (𝜁 ) 𝜃𝜑′(𝑦, 𝑡∗)𝑑𝑦𝑑𝜁

= − ∫
|𝜁−𝜃|≤𝜂∕𝜎𝑛

𝜁𝑘′ (𝜁 ) 𝑑𝜁 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝜑′(𝑦, 𝑡∗)𝑑𝑦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐻

+

𝜃 ∫
|𝜁−𝜃|≤𝜂∕𝜎𝑛

𝑘′ (𝜁 ) 𝑑𝜁 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝜑′(𝑦, 𝑡∗)𝑑𝑦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐻

where 𝐻 = 𝑓𝑥(𝑡∗)
( 𝜕E𝑃

[

𝑌1−𝑌0|𝑋=𝑡∗
]

𝜕𝑋

)

 is bounded by Assumption 2.3. Since ∫ 𝜁𝑘′ (𝜁 ) 𝑑𝜁 = 0 and 𝜎𝑛|𝜃| ≤ 𝜂
2 :

|

|

|

|

|

∫
|𝜁−𝜃|≤𝜂∕𝜎𝑛

𝜁𝑘′ (𝜁 ) 𝑑𝜁
|

|

|

|

|

=
|

|

|

|

|

∫
|𝜁−𝜃|>𝜂∕𝜎𝑛

𝜁𝑘′ (𝜁 ) 𝑑𝜁
|

|

|

|

|

≤
|

|

|

|

|

∫
|𝜁 |>𝜂∕2𝜎𝑛

𝜁𝑘′ (𝜁 ) 𝑑𝜁
|

|

|

|

|

.

By Assumption 5.2, ||
|

∫
|𝜁 |>𝜂∕2𝜎𝑛

𝜁𝑘′ (𝜁 ) 𝑑𝜁 ||
|

 converges to 0 uniformly over 𝜃 ∈ 𝛩𝑛. It means that ∫
|𝜁−𝜃|≤𝜂∕𝜎𝑛

𝜁𝑘′ (𝜁 ) 𝑑𝜁 converges uniformly 
to 0.

Consider 𝜃𝐻 ∫
|𝜁−𝜃|≤𝜂∕𝜎𝑛

𝑘′ (𝜁 ) 𝑑𝜁 , and note that, since ∫ 𝑘′ (𝜁 ) 𝑑𝜁 = 1,

|

|

|

|

|

𝜃𝐻 − 𝜃𝐻 ∫
|𝜁−𝜃|≤𝜂∕𝜎𝑛

𝑘′ (𝜁 ) 𝑑𝜁
|

|

|

|

|

=
|

|

|

|

|

𝜃𝐻 ∫
|𝜁−𝜃|>𝜂∕𝜎𝑛

𝑘′ (𝜁 ) 𝑑𝜁
|

|

|

|

|

≤

|𝜎𝑛𝜃𝐻|𝜎−1𝑛 ∫
|𝜁−𝜃|>𝜂∕𝜎𝑛

𝑘′ (𝜁 ) 𝑑𝜁 ≤ 𝜂
2
𝜎−1𝑛 ∫

|𝜁−𝜃|>𝜂∕𝜎𝑛
𝑘′ (𝜁 ) 𝑑𝜁.
25 
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The last term is bounded uniformly over 𝑛 and 𝜃 ∈ 𝛩𝑛 and converges to 0 by Assumption 5.2. It means that

lim
𝑛→∞

|

|

|

|

|

sup
𝜃∈𝛩𝑛

𝐽𝑛2 − 𝜃𝐻
|

|

|

|

|

= 0.

Finally, consider 𝐽𝑛3:

|𝐽𝑛3| =
|

|

|

|

|

1
2
𝜎−2𝑛 ∫

|𝑋−𝑡∗|≤𝜂 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′
(

𝑋 − 𝑡∗
𝜎𝑛

+ 𝜃
)

𝜑′′(𝑦, 𝑡)(𝑥 − 𝑡∗)2𝑑𝑦𝑑𝑥
|

|

|

|

|

=
|

|

|

|

|

1
2
𝜎𝑛 ∫

|𝜁−𝜃|≤𝜂∕𝜎𝑛 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′ (𝜁 )𝜑′′(𝑦, 𝑡)(𝜁 − 𝜃)2𝑑𝑦𝑑𝑥
|

|

|

|

|

≤
|

|

|

|

|

1
2
𝜎𝑛 ∫

|𝜁−𝜃|≤𝜂∕𝜎𝑛 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′ (𝜁 ) 𝜁2𝜑′′(𝑦, 𝑡)𝑑𝑦𝑑𝑥
|

|

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝑜(1)

+

𝜎𝑛|𝜃|
|

|

|

|

|

∫
|𝜁−𝜃|≤𝜂∕𝜎𝑛 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′ (𝜁 ) 𝜁𝜑′′(𝑦, 𝑡)𝑑𝑦𝑑𝑥
|

|

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝑎1

+

𝜎𝑛|𝜃|
2
|

|

|

|

|

∫
|𝜁−𝜃|≤𝜂∕𝜎𝑛 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′ (𝜁 )𝜑′′(𝑦, 𝑡)𝑑𝑦𝑑𝑥
|

|

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝑎2

.

Combine results on 𝐼𝑛2 and 𝐽𝑛1, 𝐽𝑛2, and 𝐽𝑛3 to get

|E[𝑆̂𝜃𝑛 (𝜃)] −𝐻𝜃| = |𝐽𝑛1 + 𝐽𝑛2 + 𝐽𝑛3 + 𝐼𝑛2 −𝐻𝜃| ≤ 𝑜(1) + 𝑎1𝜎𝑛|𝜃| + 𝑎2𝜎𝑛𝜃2

uniformly over 𝜃 ∈ 𝛩𝑛, which proves the second part of the lemma. □

Lemma 4.  Let Assumptions  1, 2 (with 𝑠 = ℎ + 1 for some ℎ ≥ 2), and 5 hold. Define 𝜃̂𝑛 =
𝑡∗−𝑡𝑠𝑛
𝜎𝑛

. Then plim𝑛→∞ 𝜃̂𝑛 = 0.

Proof.  Consider 𝑆̂𝜃𝑛 (𝜃̂𝑛):

𝑆̂𝜃𝑛 (𝜃̂𝑛) = − (𝑛𝜎2𝑛 )
−1

𝑛
∑

𝑖=1

[(

𝐷𝑖𝑌𝑖
𝑝(𝑋𝑖)

−
(1 −𝐷𝑖)𝑌𝑖
(1 − 𝑝(𝑋𝑖))

)

𝑘′
(

𝑋𝑖 − 𝑡∗

𝜎𝑛
+ 𝜃̂𝑛

)]

= − (𝑛𝜎2𝑛 )
−1

𝑛
∑

𝑖=1

[

(

𝐷𝑖𝑌𝑖
𝑝(𝑋𝑖)

−
(1 −𝐷𝑖)𝑌𝑖
(1 − 𝑝(𝑋𝑖))

)

𝑘′
(

𝑋𝑖 − 𝑡𝑠𝑛
𝜎𝑛

)]

.

By Theorem  3, 𝑡𝑠𝑛 →𝑎.𝑠. 𝑡∗. With probability approaching 1, then, 𝑡𝑠𝑛 is an interior point of  . It means that, with probability 
approaching 1, 𝑆̂𝜃𝑛 (𝜃̂𝑛) = 𝑆̂1

𝑛 (𝑡
𝑠
𝑛, 𝜎𝑛) = 0. Hence Lemma  3 gives

|𝐻𝜃̂𝑛| ≤ 𝑜(1) + 𝑎1𝜎𝑛|𝜃̂𝑛| + 𝑎2𝜎𝑛𝜃̂2𝑛

with 𝐻 ≠ 0 by Assumptions 2.1 and 2.3.
I will hence prove plim𝑛→∞ 𝜃̂𝑛 = 0 by contradiction. First, assume that 𝜃̂𝑛 has finite limit different from 0. The left-hand side of 

the previous inequality would be positive, while the right-hand side converges to 0. This contradicts the inequality. Then assume 
the limit is unbounded. By Theorem  3, plim𝑛→∞ 𝜎𝑛𝜃̂𝑛 = 0. This gives the contradiction

|𝐻𝜃̂𝑛|

|𝜃̂𝑛|
⏟⏟⏟
=|𝐻|>0

≤ 𝑜(1)
|𝜃̂𝑛|
⏟⏟⏟

→0

+
𝑎1𝜎𝑛|𝜃̂𝑛|

|𝜃̂𝑛|
⏟⏞⏟⏞⏟
=𝑎1𝜎𝑛→0

+
𝑎2𝜎𝑛𝜃̂2𝑛
|𝜃̂𝑛|

⏟⏟⏟
=𝑎2𝜎𝑛|𝜃̂𝑛|→0

and proves that plim𝑛→∞ 𝜃̂𝑛 = 0. □

Lemma 5.  Let Assumptions  1, 2 (with 𝑠 = ℎ + 1 for some ℎ ≥ 2), and 5 hold. Consider a sequence 𝑡𝑛 such that 𝑡𝑛−𝑡
∗

𝜎𝑛
→ 0. Then

plim𝑛→∞ 𝑆̂2
𝑛 (𝑡𝑛, 𝜎𝑛) = −𝐻.

Proof.  To prove the lemma it is sufficient to show that E[𝑆̂2
𝑛 (𝑡𝑛, 𝜎𝑛)] → 𝐻 and Var(𝑆̂2

𝑛 (𝑡𝑛, 𝜎𝑛)) → 0. Recall that

𝑆̂2
𝑛 (𝑡, 𝜎𝑛) =

1
2
1

𝑛
∑

[(

𝐷𝑖𝑌𝑖 −
(1 −𝐷𝑖)𝑌𝑖

)

𝑘′′
(

𝑋𝑖 − 𝑡
)]
𝜎𝑛 𝑛 𝑖=1 𝑝(𝑋𝑖) (1 − 𝑝(𝑋𝑖)) 𝜎𝑛
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and hence

E[𝑆̂2
𝑛 (𝑡𝑛, 𝜎𝑛)] =

1
𝜎2𝑛

E
[(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
1 − 𝑝(𝑋)

)

𝑘′′
(

𝑋 − 𝑡𝑛
𝜎𝑛

)]

= 1
𝜎2𝑛 ∫𝑥 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
1 − 𝑝(𝑋)

)

𝑘′′
(

𝑋 − 𝑡𝑛
𝜎𝑛

)

𝜑(𝑦, 𝑥)𝑑𝑦𝑑𝑥.

Consider a Taylor expansion of 𝜑(𝑦, 𝑥) about 𝑥 = 𝑡∗:

𝜑(𝑦, 𝑥) = 𝜑(𝑦, 𝑡∗) + 𝜑′(𝑦, 𝑡∗)(𝑥 − 𝑡∗) + 1
2
𝜑′′(𝑦, 𝑡)(𝑥 − 𝑡∗)2

with |𝑡 − 𝑡∗| ≤ |𝑥 − 𝑡∗|. Let 𝜂 > 0 be such that 𝜑𝑦,𝑥(𝑦, 𝑥) has second derivative uniformly bounded for almost every 𝑋 if |𝑋 − 𝑡∗| < 𝜂, 
and write E[𝑆̂2

𝑛 (𝑡𝑛, 𝜎𝑛)] as 𝐼𝑛1 + 𝐼𝑛2 + 𝐼𝑛3 + 𝐼𝑛4, where:

𝐼𝑛1 =𝜎−2𝑛 ∫
|𝑋−𝑡∗|≤𝜂 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′′
(

𝑋 − 𝑡𝑛
𝜎𝑛

)

𝜑(𝑦, 𝑡∗)𝑑𝑦𝑑𝑥

=𝜎−2𝑛 E[𝑌1 − 𝑌0|𝑋 = 𝑡∗]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

∫
|𝑋−𝑡∗|≤𝜂

𝑘′′
(

𝑋 − 𝑡𝑛
𝜎𝑛

)

𝑓𝑥(𝑡∗)𝑑𝑥 = 0

𝐼𝑛2 =𝜎−2𝑛 ∫
|𝑋−𝑡∗|≤𝜂 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′′
(

𝑋 − 𝑡𝑛
𝜎𝑛

)

𝜑′(𝑦, 𝑡∗)(𝑥 − 𝑡∗)𝑑𝑦𝑑𝑥

𝐼𝑛3 =𝜎−2𝑛 ∫
|𝑋−𝑡∗|≤𝜂 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′′
(

𝑋 − 𝑡𝑛
𝜎𝑛

)

1
2
𝜑′′(𝑦, 𝑡)(𝑥 − 𝑡∗)2𝑑𝑦𝑑𝑥

𝐼𝑛4 =
1
𝜎2𝑛 ∫

|𝑋−𝑡∗|>𝜂 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
1 − 𝑝(𝑋)

)

𝑘′′
(

𝑋 − 𝑡𝑛
𝜎𝑛

)

𝜑(𝑦, 𝑥)𝑑𝑦𝑑𝑥.

Consider the substitution 𝜁 = 𝑋−𝑡∗
𝜎𝑛

+ 𝜃𝑛 =
𝑋−𝑡𝑛
𝜎𝑛

:

𝐼𝑛2 =∫
|𝜁−𝜃𝑛|≤𝜂∕𝜎𝑛 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′′ (𝜁 )𝜑′(𝑦, 𝑡∗)(𝜁 − 𝜃𝑛)𝑑𝑦𝑑𝜁

=∫
|𝜁−𝜃𝑛|≤𝜂∕𝜎𝑛

𝑘′′ (𝜁 ) (𝜁 − 𝜃𝑛)𝑑𝜁 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝜑′(𝑦, 𝑡∗)𝑑𝑦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐻

=𝐻 ∫
|𝜁−𝜃𝑛|≤𝜂∕𝜎𝑛

𝜁𝑘′′ (𝜁 ) 𝑑𝜁 − 𝜃𝑛𝐻 ∫
|𝜁−𝜃𝑛|≤𝜂∕𝜎𝑛

𝑘′′ (𝜁 ) 𝑑𝜁

=𝐻

(

∫ 𝜁𝑘′′ (𝜁 ) 𝑑𝜁 − ∫
|𝜁−𝜃𝑛|>𝜂∕𝜎𝑛

𝜁𝑘′′ (𝜁 ) 𝑑𝜁

)

− 𝜃𝑛𝐻 ∫
|𝜁−𝜃𝑛|≤𝜂∕𝜎𝑛

𝑘′′ (𝜁 ) 𝑑𝜁

Under Assumption 5.2, ∫ 𝜁𝑘′′ (𝜁 ) 𝑑𝜁 = −1, ∫
|𝜁−𝜃𝑛|>𝜂∕𝜎𝑛

𝜁𝑘′′ (𝜁 ) 𝑑𝜁 →𝑝 0 and ∫
|𝜁−𝜃𝑛|≤𝜂∕𝜎𝑛

𝑘′′ (𝜁 ) 𝑑𝜁 is bounded. Since 𝜃𝑛 →𝑝 0, 𝐼𝑛2 →𝑝 −𝐻 .
Consider 𝐼𝑛3 and the substitution 𝜁 = 𝑋−𝑡∗

𝜎𝑛
+ 𝜃𝑛 =

𝑋−𝑡𝑛
𝜎𝑛

:

𝐼𝑛3 =
1
2
𝜎𝑛 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝜑′′(𝑦, 𝑡)𝑑𝑦∫
|𝜁−𝜃𝑛|≤𝜂∕𝜎𝑛

𝑘′′ (𝜁 ) (𝜁 − 𝜃𝑛)2𝑑𝜁.

Integrals are bounded by Assumptions 2.3 with 𝑠 = ℎ + 1 and 5.2, and hence 𝐼𝑛3 → 0.
Finally, consider 𝐼𝑛4 and the substitution 𝜁 = 𝑋−𝑡∗

𝜎𝑛
+ 𝜃𝑛 =

𝑋−𝑡𝑛
𝜎𝑛

:

𝐼𝑛4 =
1
𝜎𝑛 ∫

|𝜁−𝜃𝑛|>𝜂∕𝜎𝑛
∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
1 − 𝑝(𝑋)

)

𝑘′′ (𝜁 )𝜑(𝑦, 𝑡∗ + 𝜎𝑛(𝜁 − 𝜃𝑛))𝑑𝑦𝑑𝜁

→𝑝
∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
1 − 𝑝(𝑋)

)

𝜑(𝑦, 𝑡∗)𝑑𝑦 1
𝜎𝑛 ∫

|𝜁−𝜃𝑛|>𝜂∕𝜎𝑛
𝑘′′ (𝜁 ) 𝑑𝜁.

∫𝑦
(

𝐷𝑌
𝑝(𝑋) −

(1−𝐷)𝑌
1−𝑝(𝑋)

)

𝜑(𝑦, 𝑡∗)𝑑𝑦 is bounded by Assumptions 2.2 and 1
𝜎𝑛

∫
|𝜁−𝜃𝑛|>𝜂∕𝜎𝑛

𝑘′′ (𝜁 ) 𝑑𝜁 →𝑝 0 by Assumptions 5.2, and hence 
𝐼𝑛4 →𝑝 0.

Combine results on 𝐼𝑛1, 𝐼𝑛2, 𝐼𝑛3, and 𝐼𝑛4 to conclude E[𝑆̂2
𝑛 (𝑡𝑛, 𝜎𝑛)] → 𝐻 . Consider now the variance:

Var(𝑆̂2
𝑛 (𝑡𝑛, 𝜎𝑛)) =Var

(

1
𝜎2𝑛

1
𝑛

𝑛
∑

𝑖=1

[(

𝐷𝑖𝑌𝑖
𝑝(𝑋𝑖)

−
(1 −𝐷𝑖)𝑌𝑖
(1 − 𝑝(𝑋𝑖))

)

𝑘′′
(

𝑋𝑖 − 𝑡𝑛
𝜎𝑛

)]

)

= 1
𝑛𝜎4𝑛

Var
((

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′′
(

𝑋 − 𝑡𝑛
𝜎𝑛

))

= 1
4
E

[

(

𝐷𝑌 −
(1 −𝐷)𝑌

)2
𝑘′′

(

𝑋 − 𝑡𝑛
)2

]

−

𝑛𝜎𝑛 𝑝(𝑋) (1 − 𝑝(𝑋)) 𝜎𝑛
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1
𝑛

⎛

⎜

⎜

⎜

⎜

⎝

1
𝜎𝑛

E
[(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)

𝑘′′
(

𝑋 − 𝑡𝑛
𝜎𝑛

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
→𝑝0

⎞

⎟

⎟

⎟

⎟

⎠

2

and the substitution 𝜁 = 𝑋−𝑡∗
𝜎𝑛

+ 𝜃𝑛 =
𝑋−𝑡𝑛
𝜎𝑛

:

1
𝑛𝜎4𝑛

E

[

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2
𝑘′′

(

𝑋 − 𝑡𝑛
𝜎𝑛

)2
]

=

1
𝑛𝜎3𝑛 ∫𝜁 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2
𝑘′′ (𝜁 )2 𝜑(𝑦, 𝑡∗ + 𝜎𝑛(𝜁 − 𝜃𝑛))𝑑𝑦𝑑𝜁 →𝑝

1
𝑛𝜎3𝑛 ∫𝑦

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)2
𝜑(𝑦, 𝑡∗)𝑑𝑦∫𝜁

𝑘′′ (𝜁 )2 𝑑𝜁.

∫𝑦
(

𝐷𝑌
𝑝(𝑋) −

(1−𝐷)𝑌
1−𝑝(𝑋)

)

𝜑(𝑦, 𝑡∗)𝑑𝑦 and ∫𝜁 𝑘′′ (𝜁 )2 𝑑𝜁 are bounded by Assumptions 2.2 and 5.2. Since by Assumption 5.1 𝑛𝜎3𝑛 → ∞, conclude 
that Var(𝑆̂2

𝑛 (𝑡𝑛, 𝜎𝑛)) → 0. □

Theorem  4.  Consider the SWM policy 𝑡𝑠𝑛 defined in Eq.  (4) and the optimal policy 𝑡∗ defined in Eq.  (1). Under Assumptions  1, 2 (with 
𝑠 = ℎ + 1 for some ℎ ≥ 2), 3.1, and 5, as 𝑛→ ∞:

1. if 𝑛𝜎2ℎ+1𝑛 → ∞,

𝜎−ℎ𝑛 (𝑡𝑠𝑛 − 𝑡
∗) →𝑝 𝐻−1𝐴;

2. if 𝑛𝜎2ℎ+1𝑛 → 𝜆 < ∞,

(𝑛𝜎𝑛)
1
2 (𝑡𝑠𝑛 − 𝑡

∗) →𝑑  (𝜆
1
2𝐻−1𝐴,𝐻−2𝛼2𝐾);

where 𝐴, 𝛼1, and 𝛼2 are:

𝐴 = − 1
ℎ!
𝛼1 ∫𝑦

(

𝑌1 − 𝑌0
)

𝜑ℎ𝑥(𝑦, 𝑡
∗)𝑑𝑦

𝛼1 =∫𝜁
𝜁ℎ𝑘′ (𝜁 ) 𝑑𝜁

𝛼2 =∫𝜁
𝑘′ (𝜁 )2 𝑑𝜁.

Proof.  Consider a Taylor expansion of 𝑆̂1
𝑛 (𝑡, 𝜎𝑛) about 𝑡 = 𝑡∗:

𝑆̂1
𝑛 (𝑡

𝑠
𝑛, 𝜎𝑛) = 𝑆̂1

𝑛 (𝑡
∗, 𝜎𝑛) + 𝑆̂2

𝑛 (𝑡, 𝜎𝑛)(𝑡
𝑠
𝑛 − 𝑡

∗)

with |𝑡 − 𝑡∗| ≤ |𝑡𝑠𝑛 − 𝑡
∗
|. By Theorem  3, 𝑡𝑠𝑛 →𝑎.𝑠. 𝑡∗, and hence with probability approaching 1 𝑡𝑠𝑛 is an interior point of  . It means 

that, with probability approaching 1, 𝑆̂1
𝑛 (𝑡

𝑠
𝑛, 𝜎𝑛) = 0.

To prove the first result of the theorem, note that with probability approaching one as 𝑛→ ∞

𝜎−ℎ𝑛 𝑆̂1
𝑛 (𝑡

∗, 𝜎𝑛) + 𝜎−ℎ𝑛 𝑆̂2
𝑛 (𝑡, 𝜎𝑛)(𝑡

𝑠
𝑛 − 𝑡

∗) = 0.

By Lemmas  4 and 5, plim𝑛→∞ 𝑆̂2
𝑛 (𝑡𝑛, 𝜎𝑛) = −𝐻 , and 𝐻 ≠ 0 by Assumptions 2.1 and 2.3. Hence

𝜎−ℎ𝑛 (𝑡𝑠𝑛 − 𝑡
∗) = 𝐻−1𝜎−ℎ𝑛 𝑆̂1

𝑛 (𝑡
∗, 𝜎𝑛) + 𝑜𝑝(1)

and since 𝜎−ℎ𝑛 𝑆̂1
𝑛 (𝑡

∗, 𝜎𝑛) →𝑝 𝐴 by Lemma  2,
𝜎−ℎ𝑛 (𝑡𝑠𝑛 − 𝑡

∗) →𝑝 𝐻−1𝐴.

Analogously, to prove the second result note that

(𝑛𝜎𝑛)
1
2 𝑆̂1

𝑛 (𝑡
∗, 𝜎𝑛) + (𝑛𝜎𝑛)

1
2 𝑆̂2

𝑛 (𝑡, 𝜎𝑛)(𝑡
𝑠
𝑛 − 𝑡

∗) = 0.

with probability approaching 1, and hence

(𝑛𝜎𝑛)
1
2 (𝑡𝑠𝑛 − 𝑡

∗) = 𝐻−1(𝑛𝜎𝑛)
1
2 𝑆̂1

𝑛 (𝑡
∗, 𝜎𝑛).

Since (𝑛𝜎𝑛)
1
2 𝑆̂1

𝑛 (𝑡
∗, 𝜎𝑛) →𝑑  (𝜆

1
2𝐴, 𝛼2𝐾) by Lemma  2,

(𝑛𝜎𝑛)
1
2 (𝑡𝑠𝑛 − 𝑡

∗) →𝑑  (𝜆
1
2𝐻−1𝐴,𝐻−2𝛼2𝐾).
28 



F. Crippa Journal of Econometrics 249 (2025) 105998 
For the third result, first compute the asymptotic bias and the asymptotic variance of 𝑡𝑠𝑛 − 𝑡∗:

E[𝑡𝑠𝑛 − 𝑡
∗] = − 𝜆

1
2
𝐴
𝐻

(𝑛𝜎𝑛)
− 1

2 = −𝜆
1
2
𝐴
𝐻
𝜆−

1
2(2ℎ+1) 𝑛−

ℎ
2ℎ+1

Var(𝑡𝑠𝑛 − 𝑡
∗) =

𝛼2𝐾
𝐻2

𝜆−
1

2ℎ+1 𝑛−
2ℎ

2ℎ+1

and then the MSE:

𝑀𝑆𝐸 = 1
𝐻2

𝑛−
2ℎ

2ℎ+1

[

𝛼2𝐾𝜆
− 1

2ℎ+1 + 𝐴2𝜆
2ℎ

2ℎ+1

]

which is minimize setting

𝜆 = 𝜆∗ =
𝛼2𝐾
2ℎ𝐴2

. □

Corollary  4.1.  Asymptotic distribution of regret (𝑡𝑠𝑛) is:

𝑛𝜎𝑛(𝑡𝑠𝑛) →
𝑑 1
2
𝛼2𝐾
𝐻

𝜒2
(

1, 𝜆𝐴
2

𝛼2𝐾

)

where 𝜒2
(

1, 𝜆𝐴
2

𝛼2𝐾

)

 is a non-centered chi-squared distribution with 1 degree of freedom and non-central parameter 𝜆𝐴2

𝛼2𝐾
. The expected value 

of the asymptotic distribution is:
1
2
𝛼2𝐾
𝐻

(

1 + 𝜆𝐴2

𝛼2𝐾

)

=
𝛼2
2
𝐾
𝐻

+ 1
2
𝜆𝐴2

𝐻
.

Let 𝜎𝑛 = (𝜆∕𝑛)1∕(2ℎ+1) with 𝜆 ∈ (0,∞). The expectation of the asymptotic regret is minimized by setting 𝜆 = 𝜆∗ = 𝛼2𝐾
2ℎ𝐴2 : in this case the 

expectation of the asymptotic distribution scaled by 𝑛
2ℎ

2ℎ+1  is 𝐴
2

2ℎ+1𝐾
2ℎ

2ℎ+1𝐻−1𝐶𝑠, where 𝐶𝑠 = 2ℎ+1
2

(

𝛼2
2ℎ

)
2ℎ

2ℎ+1  is a constant not dependent on 
𝑃 .

Proof.  Result in Eq.  (2) for 𝑡𝑠𝑛 implies

𝑛𝜎𝑛(𝑡𝑠𝑛) →
𝑑 1
2
𝑊 ′′(𝑡)

(

(𝑛𝜎𝑛)
1
2
(

𝑡𝑠𝑛 − 𝑡
∗)
)2
.

where |𝑡 − 𝑡∗| ≤ |𝑡𝑠𝑛 − 𝑡
∗
|. By continuous mapping theorem

𝑊 ′′(𝑡) →𝑝 𝑊 ′′(𝑡∗) = 𝐻

and hence by Slutsky’s theorem

𝑛𝜎𝑛(𝑡𝑠𝑛) →
𝑑 1
2
𝐻

(

 (𝜆
1
2𝐻−1𝐴,𝐻−2𝛼2𝐾)

)2
=𝑑 1

2
𝛼2𝐾
𝐻

(

 (𝜆
1
2𝐴∕

√

𝐷, 1)
)2
.

By definition, 𝜒2
(

1, 𝜆𝐴
2

𝛼2𝐾

)

=𝑑
(

 (𝜆
1
2𝐴∕

√

𝐷, 1)
)2
, and E

[

𝜒2
(

1, 𝜆𝐴
2

𝛼2𝐾

)]

=
(

1 + 𝜆𝐴2

𝛼2𝐾

)

.
When 𝜎𝑛 = (𝜆∕𝑛)1∕(2ℎ+1), the expectation of asymptotic regret is minimized by

𝜆∗ = argmin
𝜆

(𝑛𝜎𝑛)−1
(

𝛼2
2
𝐾
𝐻

+ 1
2
𝜆𝐴2

𝐻

)

= argmin
𝜆

𝛼2𝐾𝜆
− 1

2ℎ+1 + 𝐴2𝜆
2ℎ

2ℎ+1

which is solved by 𝜆∗ = 𝛼2𝐾
2ℎ𝐴2 .

By substituting 𝜎𝑛 by (𝜆∕𝑛)1∕(2ℎ+1), and 𝜆 by 𝛼2𝐾2ℎ𝐴2 , the expectation of the asymptotic regret multiplied by (𝑛𝜎𝑛)−1 is

(𝑛𝜎𝑛)−1
(

𝛼2
2
𝐾
𝐻

+ 1
2
𝜆𝐴2

𝐻

)

= 𝑛−
2ℎ

2ℎ+1𝐴
2

2ℎ+1𝐾
2ℎ

2ℎ+1𝐻−1 2ℎ + 1
2

( 𝛼2
2ℎ

)
2ℎ

2ℎ+1

and the expectation of the asymptotic distribution scaled by 𝑛
2ℎ

2ℎ+1  is 𝐴
2

2ℎ+1𝐾
2ℎ

2ℎ+1𝐻−1𝐶𝑠, where 𝐶𝑠 = 2ℎ+1
2

(

𝛼2
2ℎ

)
2ℎ

2ℎ+1  is a constant not 
dependent on 𝑃 . □

Theorem  5.  Consider estimators 𝑡𝑒𝑛 defined in Eq.  (3) and 𝑡𝑏𝑛 defined in Eq.  (7) and the estimand 𝑡∗ defined in Eq.  (1). Under Assumptions 
1, 2 (with 𝑠 = 2), 3, and 6, as 𝐻̂𝑛 →

𝑝 𝐻 and 𝑛→ ∞,

𝑛1∕3
(

𝑡𝑏𝑛 − 𝑡𝑛
)

→𝑑 (2
√

𝐾∕𝐻)
2
3 argmax

𝑟

(

𝐵(𝑟) − 𝑟2
)

where the limiting distribution is the same as in Theorem  2.

Proof.  The result follows from the main theorem in Cattaneo et al. (2020). I will show that the assumptions for their results hold. 
My case is the benchmark case with 𝑚𝑛 = 𝑚0 (in my notation, 𝑚), 𝑀𝑛 = 𝑀0 (in my notation, 𝑃𝑚) and 𝑞𝑛 = 1. Hence, in my case, 
class   coincides with 𝑚. I will verify the five conditions CRA:
𝑛
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1. Consider envelope 𝐹 = 2 ||
|

𝐷𝑌
𝑝(𝑋) −

(1−𝐷)𝑌
(1−𝑝(𝑋))

|

|

|

: Assumption 2.2 guarantees it is square integrable.
Since 𝑀𝑛 =𝑀0, sup𝑡 |𝑀𝑛(𝑡) −𝑀0(𝑡)| = 0. Under Assumption 2.1, 𝑡∗ is the unique maximizer of 𝑚, and hence sup𝑡≠𝑡∗ 𝑚(𝑡) < 𝑚(𝑡∗).

2. 𝑡∗ is an interior point of   by Assumption 2.1. Assumption 2.3 with 𝑠 = 2 guarantees that 𝑃𝑚 is twice continuously 
differentiable in a neighborhood of 𝑡∗.

3. I proved that this condition is satisfied in the proof of Theorem  2, under Assumption 2.2. In my notation, 𝛿 = 𝑅, 𝛿′
𝑛 = 𝑅, 

𝑑𝛿′𝑛 = 𝐺𝑅.
4. Note that:

E[𝐺4
𝑅] = E

[

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)4
𝟏{|
|

𝑋 − 𝑡∗|
|

< 𝑅}

]

= 2𝑅E

[

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)4
|

|

|

|

|

𝑋 = 𝑡∗
]

+ 𝑜(1).

and that

E

[

(

𝐷𝑌
𝑝(𝑋)

−
(1 −𝐷)𝑌
(1 − 𝑝(𝑋))

)4
]

= 1
𝑝(𝑋)3

E
[

𝑌 4
1
]

+ 1
(1 − 𝑝(𝑋))3

E
[

𝑌 4
0
]

.

Let 𝑅 = 𝑂(𝑛−
1
3 ). It follows from Assumption  6 that

𝑛−
1
3 E[𝐺4

𝑅] =2𝑛
− 1

3𝑅
(

1
𝑝(𝑋)3

E
[

𝑌 4
1
]

+ 1
(1 − 𝑝(𝑋))3

E
[

𝑌 4
0
]

)

+ 𝑜(1)

=𝑜(1).

The second part of Assumption 4 is the same as the first part of assumption 5 in Theorem 1.1 in Kim and Pollard (1990). The 
only difference is that it must be valid for 𝑡 = 𝑡∗ and 𝑡 in a neighborhood of 𝑡∗. Since Assumptions 2.2 and 2.3 with 𝑠 = 2 are 
valid also in a neighborhood of 𝑡∗, the argument provided before holds also here.

5. The first part of this assumption is the same as assumption 6 in Kim and Pollard (1990), and the second part is the same as 
assumption 7 in Kim and Pollard (1990). Under Assumptions 2.3 with 𝑠 = 2, and 3, arguments provided before hold.

CRA assumptions 1–5 by Cattaneo et al. (2020) are satisfied; hence, their results in Theorem 1 hold. It implies
𝑛1∕3

(

𝑡𝑏𝑛 − 𝑡𝑛
)

→𝑑 𝑄(𝑟)

where 𝑄(𝑟) = 𝑄1(𝑟) +𝑄0(𝑟), and 𝑄1 is a non degenerate zero-mean Gaussian process, while 𝑄0(𝑟) = − 1
2 𝑟

2𝐻 . Process 𝑄(𝑟) is the same 
as in Theorem  2. □
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